File size: 1,498 Bytes
c0589c8
e33eda0
 
c0589c8
e33eda0
 
 
 
 
 
c0589c8
 
e33eda0
 
c0589c8
e33eda0
c0589c8
e33eda0
 
 
 
c0589c8
e33eda0
c0589c8
e33eda0
c0589c8
e33eda0
c0589c8
e33eda0
c0589c8
e33eda0
c0589c8
e33eda0
c0589c8
e33eda0
c0589c8
e33eda0
c0589c8
e33eda0
 
 
 
 
 
 
 
c0589c8
e33eda0
c0589c8
e33eda0
 
 
 
 
c0589c8
e33eda0
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
license: apache-2.0
base_model: t5-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: t5-large-bn-adapter-6.34M-snli-model1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-large-bn-adapter-6.34M-snli-model1

This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6034
- Accuracy: 0.8005

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.3118        | 1.0   | 17168 | 0.2381          | 0.9150   |
| 0.2742        | 2.0   | 34336 | 0.2299          | 0.9171   |
| 0.2725        | 3.0   | 51504 | 0.2277          | 0.9197   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0