File size: 1,806 Bytes
eb76a4c
 
 
 
 
 
 
 
 
 
abe87ea
eb76a4c
 
 
 
 
 
 
 
 
 
 
 
 
abe87ea
eb76a4c
 
 
 
 
abe87ea
eb76a4c
 
 
abe87ea
 
eb76a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abe87ea
eb76a4c
 
 
 
 
 
 
 
abe87ea
 
 
eb76a4c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
datasets:
- sagnikrayc/snli-cf-kaushik
metrics:
- accuracy
model-index:
- name: roberta-base-fp-sick
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: snli-cf-kaushik
      type: sagnikrayc/snli-cf-kaushik
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.4395
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-base-fp-sick

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the snli-cf-kaushik dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1373
- Accuracy: 0.4395

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 33
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 70   | 0.4164          | 0.8485   |
| No log        | 2.0   | 140  | 0.3497          | 0.8747   |
| No log        | 3.0   | 210  | 0.3346          | 0.8727   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.0.1+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0