vallabh001
commited on
Add new SentenceTransformer model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +840 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +54 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,840 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- multilingual
|
5 |
+
- ar
|
6 |
+
- bg
|
7 |
+
- ca
|
8 |
+
- cs
|
9 |
+
- da
|
10 |
+
- de
|
11 |
+
- el
|
12 |
+
- es
|
13 |
+
- et
|
14 |
+
- fa
|
15 |
+
- fi
|
16 |
+
- fr
|
17 |
+
- gl
|
18 |
+
- gu
|
19 |
+
- he
|
20 |
+
- hi
|
21 |
+
- hr
|
22 |
+
- hu
|
23 |
+
- hy
|
24 |
+
- id
|
25 |
+
- it
|
26 |
+
- ja
|
27 |
+
- ka
|
28 |
+
- ko
|
29 |
+
- ku
|
30 |
+
- lt
|
31 |
+
- lv
|
32 |
+
- mk
|
33 |
+
- mn
|
34 |
+
- mr
|
35 |
+
- ms
|
36 |
+
- my
|
37 |
+
- nb
|
38 |
+
- nl
|
39 |
+
- pl
|
40 |
+
- pt
|
41 |
+
- ro
|
42 |
+
- ru
|
43 |
+
- sk
|
44 |
+
- sl
|
45 |
+
- sq
|
46 |
+
- sr
|
47 |
+
- sv
|
48 |
+
- th
|
49 |
+
- tr
|
50 |
+
- uk
|
51 |
+
- ur
|
52 |
+
- vi
|
53 |
+
- zh
|
54 |
+
tags:
|
55 |
+
- sentence-transformers
|
56 |
+
- sentence-similarity
|
57 |
+
- feature-extraction
|
58 |
+
- generated_from_trainer
|
59 |
+
- dataset_size:404981
|
60 |
+
- loss:MSELoss
|
61 |
+
base_model: FacebookAI/xlm-roberta-base
|
62 |
+
widget:
|
63 |
+
- source_sentence: It's not negative; it's positive.
|
64 |
+
sentences:
|
65 |
+
- Las partes en conflicto también deben estar preparadas para volver a la mesa de
|
66 |
+
negociación si se estanca la implementación del acuerdo.
|
67 |
+
- A veces refieren a él como al Campo de Prisioneros de Guerra Número 334, lugar
|
68 |
+
donde viven ahora los lakota.
|
69 |
+
- No es negativo, es positivo.
|
70 |
+
- source_sentence: So the first of the three is design for education.
|
71 |
+
sentences:
|
72 |
+
- El primer enfoque es diseñar para la educación.
|
73 |
+
- Las enfermedades cardiacas y cardiovasculares siguen matando a más gente, no
|
74 |
+
sólo en este país sino también en todo el mundo, que cualquier otra combinación
|
75 |
+
de lo demás, sin embargo casi todos podemos prevenirlo por completo.
|
76 |
+
- Siempre que discutimos uno de estos problemas que tenemos que abordar... el trabajo
|
77 |
+
infantil en las granjas de algodón de India, este año vamos a monitorear 50.000
|
78 |
+
granjas de algodón en India.
|
79 |
+
- source_sentence: So take a look around this auditorium today.
|
80 |
+
sentences:
|
81 |
+
- Lo dispuesto en el acuerdo puede ser complejo, pero también lo es el conflicto
|
82 |
+
subyacente.
|
83 |
+
- Y puedo ver que algo más murió allí en el fango sangriento y fue enterrado en
|
84 |
+
la tormenta de nieve.
|
85 |
+
- Miremos alrededor, en este auditorio.
|
86 |
+
- source_sentence: Every time he has visitors, it's the first place that he takes
|
87 |
+
them.
|
88 |
+
sentences:
|
89 |
+
- Siempre que tiene visitas es el primer lugar al que los lleva.
|
90 |
+
- El desempleo en la reserva aborigen de Pine Ridge fluctúa entre el 85% y el 90%.
|
91 |
+
- Si la conexión es débil, los motores se quedarán apagados y la mosca seguirá derecho
|
92 |
+
en su curso.
|
93 |
+
- source_sentence: We need a different machine.
|
94 |
+
sentences:
|
95 |
+
- Vayan al sitio web. Vean los resultados de las auditorías.
|
96 |
+
- Necesitamos una máquina diferente.
|
97 |
+
- Entonces, ¿dónde nos deja esto?
|
98 |
+
datasets:
|
99 |
+
- sentence-transformers/parallel-sentences-talks
|
100 |
+
pipeline_tag: sentence-similarity
|
101 |
+
library_name: sentence-transformers
|
102 |
+
metrics:
|
103 |
+
- negative_mse
|
104 |
+
- src2trg_accuracy
|
105 |
+
- trg2src_accuracy
|
106 |
+
- mean_accuracy
|
107 |
+
- pearson_cosine
|
108 |
+
- spearman_cosine
|
109 |
+
model-index:
|
110 |
+
- name: SentenceTransformer based on FacebookAI/xlm-roberta-base
|
111 |
+
results:
|
112 |
+
- task:
|
113 |
+
type: knowledge-distillation
|
114 |
+
name: Knowledge Distillation
|
115 |
+
dataset:
|
116 |
+
name: en es
|
117 |
+
type: en-es
|
118 |
+
metrics:
|
119 |
+
- type: negative_mse
|
120 |
+
value: -10.183618545532227
|
121 |
+
name: Negative Mse
|
122 |
+
- task:
|
123 |
+
type: translation
|
124 |
+
name: Translation
|
125 |
+
dataset:
|
126 |
+
name: en es
|
127 |
+
type: en-es
|
128 |
+
metrics:
|
129 |
+
- type: src2trg_accuracy
|
130 |
+
value: 0.9878787878787879
|
131 |
+
name: Src2Trg Accuracy
|
132 |
+
- type: trg2src_accuracy
|
133 |
+
value: 0.990909090909091
|
134 |
+
name: Trg2Src Accuracy
|
135 |
+
- type: mean_accuracy
|
136 |
+
value: 0.9893939393939395
|
137 |
+
name: Mean Accuracy
|
138 |
+
- task:
|
139 |
+
type: semantic-similarity
|
140 |
+
name: Semantic Similarity
|
141 |
+
dataset:
|
142 |
+
name: sts17 es en test
|
143 |
+
type: sts17-es-en-test
|
144 |
+
metrics:
|
145 |
+
- type: pearson_cosine
|
146 |
+
value: 0.7671256411244319
|
147 |
+
name: Pearson Cosine
|
148 |
+
- type: spearman_cosine
|
149 |
+
value: 0.790302203590485
|
150 |
+
name: Spearman Cosine
|
151 |
+
---
|
152 |
+
|
153 |
+
# SentenceTransformer based on FacebookAI/xlm-roberta-base
|
154 |
+
|
155 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the [en-es](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
156 |
+
|
157 |
+
## Model Details
|
158 |
+
|
159 |
+
### Model Description
|
160 |
+
- **Model Type:** Sentence Transformer
|
161 |
+
- **Base model:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) <!-- at revision e73636d4f797dec63c3081bb6ed5c7b0bb3f2089 -->
|
162 |
+
- **Maximum Sequence Length:** 128 tokens
|
163 |
+
- **Output Dimensionality:** 768 dimensions
|
164 |
+
- **Similarity Function:** Cosine Similarity
|
165 |
+
- **Training Dataset:**
|
166 |
+
- [en-es](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks)
|
167 |
+
- **Languages:** en, multilingual, ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, gl, gu, he, hi, hr, hu, hy, id, it, ja, ka, ko, ku, lt, lv, mk, mn, mr, ms, my, nb, nl, pl, pt, ro, ru, sk, sl, sq, sr, sv, th, tr, uk, ur, vi, zh
|
168 |
+
<!-- - **License:** Unknown -->
|
169 |
+
|
170 |
+
### Model Sources
|
171 |
+
|
172 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
173 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
174 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
175 |
+
|
176 |
+
### Full Model Architecture
|
177 |
+
|
178 |
+
```
|
179 |
+
SentenceTransformer(
|
180 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
181 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
182 |
+
)
|
183 |
+
```
|
184 |
+
|
185 |
+
## Usage
|
186 |
+
|
187 |
+
### Direct Usage (Sentence Transformers)
|
188 |
+
|
189 |
+
First install the Sentence Transformers library:
|
190 |
+
|
191 |
+
```bash
|
192 |
+
pip install -U sentence-transformers
|
193 |
+
```
|
194 |
+
|
195 |
+
Then you can load this model and run inference.
|
196 |
+
```python
|
197 |
+
from sentence_transformers import SentenceTransformer
|
198 |
+
|
199 |
+
# Download from the 🤗 Hub
|
200 |
+
model = SentenceTransformer("vallabh001/xlm-roberta-base-multilingual-en-es")
|
201 |
+
# Run inference
|
202 |
+
sentences = [
|
203 |
+
'We need a different machine.',
|
204 |
+
'Necesitamos una máquina diferente.',
|
205 |
+
'Entonces, ¿dónde nos deja esto?',
|
206 |
+
]
|
207 |
+
embeddings = model.encode(sentences)
|
208 |
+
print(embeddings.shape)
|
209 |
+
# [3, 768]
|
210 |
+
|
211 |
+
# Get the similarity scores for the embeddings
|
212 |
+
similarities = model.similarity(embeddings, embeddings)
|
213 |
+
print(similarities.shape)
|
214 |
+
# [3, 3]
|
215 |
+
```
|
216 |
+
|
217 |
+
<!--
|
218 |
+
### Direct Usage (Transformers)
|
219 |
+
|
220 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
221 |
+
|
222 |
+
</details>
|
223 |
+
-->
|
224 |
+
|
225 |
+
<!--
|
226 |
+
### Downstream Usage (Sentence Transformers)
|
227 |
+
|
228 |
+
You can finetune this model on your own dataset.
|
229 |
+
|
230 |
+
<details><summary>Click to expand</summary>
|
231 |
+
|
232 |
+
</details>
|
233 |
+
-->
|
234 |
+
|
235 |
+
<!--
|
236 |
+
### Out-of-Scope Use
|
237 |
+
|
238 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
239 |
+
-->
|
240 |
+
|
241 |
+
## Evaluation
|
242 |
+
|
243 |
+
### Metrics
|
244 |
+
|
245 |
+
#### Knowledge Distillation
|
246 |
+
|
247 |
+
* Dataset: `en-es`
|
248 |
+
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
|
249 |
+
|
250 |
+
| Metric | Value |
|
251 |
+
|:-----------------|:-------------|
|
252 |
+
| **negative_mse** | **-10.1836** |
|
253 |
+
|
254 |
+
#### Translation
|
255 |
+
|
256 |
+
* Dataset: `en-es`
|
257 |
+
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
|
258 |
+
|
259 |
+
| Metric | Value |
|
260 |
+
|:------------------|:-----------|
|
261 |
+
| src2trg_accuracy | 0.9879 |
|
262 |
+
| trg2src_accuracy | 0.9909 |
|
263 |
+
| **mean_accuracy** | **0.9894** |
|
264 |
+
|
265 |
+
#### Semantic Similarity
|
266 |
+
|
267 |
+
* Dataset: `sts17-es-en-test`
|
268 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
269 |
+
|
270 |
+
| Metric | Value |
|
271 |
+
|:--------------------|:-----------|
|
272 |
+
| pearson_cosine | 0.7671 |
|
273 |
+
| **spearman_cosine** | **0.7903** |
|
274 |
+
|
275 |
+
<!--
|
276 |
+
## Bias, Risks and Limitations
|
277 |
+
|
278 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
279 |
+
-->
|
280 |
+
|
281 |
+
<!--
|
282 |
+
### Recommendations
|
283 |
+
|
284 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
285 |
+
-->
|
286 |
+
|
287 |
+
## Training Details
|
288 |
+
|
289 |
+
### Training Dataset
|
290 |
+
|
291 |
+
#### en-es
|
292 |
+
|
293 |
+
* Dataset: [en-es](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [0c70bc6](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/0c70bc6714efb1df12f8a16b9056e4653563d128)
|
294 |
+
* Size: 404,981 training samples
|
295 |
+
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
|
296 |
+
* Approximate statistics based on the first 1000 samples:
|
297 |
+
| | english | non_english | label |
|
298 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
299 |
+
| type | string | string | list |
|
300 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 25.77 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 25.42 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
301 |
+
* Samples:
|
302 |
+
| english | non_english | label |
|
303 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
304 |
+
| <code>And then there are certain conceptual things that can also benefit from hand calculating, but I think they're relatively small in number.</code> | <code>Y luego hay ciertas aspectos conceptuales que pueden beneficiarse del cálculo a mano pero creo que son relativamente pocos.</code> | <code>[-0.59398353099823, 0.9714106321334839, 0.6800687313079834, -0.21585586667060852, -0.7509507536888123, ...]</code> |
|
305 |
+
| <code>One thing I often ask about is ancient Greek and how this relates.</code> | <code>Algo que pregunto a menudo es sobre el griego antiguo y cómo se relaciona.</code> | <code>[-0.09777131676673889, 0.07093200832605362, -0.42989036440849304, -0.1457505226135254, 1.4382765293121338, ...]</code> |
|
306 |
+
| <code>See, the thing we're doing right now is we're forcing people to learn mathematics.</code> | <code>Vean, lo que estamos haciendo ahora es forzar a la gente a aprender matemáticas.</code> | <code>[0.39432215690612793, 0.1891053169965744, -0.3788300156593323, 0.438666433095932, 0.2727019190788269, ...]</code> |
|
307 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
308 |
+
|
309 |
+
### Evaluation Dataset
|
310 |
+
|
311 |
+
#### en-es
|
312 |
+
|
313 |
+
* Dataset: [en-es](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks) at [0c70bc6](https://huggingface.co/datasets/sentence-transformers/parallel-sentences-talks/tree/0c70bc6714efb1df12f8a16b9056e4653563d128)
|
314 |
+
* Size: 990 evaluation samples
|
315 |
+
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
|
316 |
+
* Approximate statistics based on the first 990 samples:
|
317 |
+
| | english | non_english | label |
|
318 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
319 |
+
| type | string | string | list |
|
320 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 26.42 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.47 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> |
|
321 |
+
* Samples:
|
322 |
+
| english | non_english | label |
|
323 |
+
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
|
324 |
+
| <code>Thank you so much, Chris.</code> | <code>Muchas gracias Chris.</code> | <code>[-0.43312570452690125, 1.0602686405181885, -0.07791059464216232, -0.41704198718070984, 1.676845908164978, ...]</code> |
|
325 |
+
| <code>And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.</code> | <code>Y es en verdad un gran honor tener la oportunidad de venir a este escenario por segunda vez. Estoy extremadamente agradecido.</code> | <code>[0.27005693316459656, 0.5391747951507568, -0.2580487132072449, -0.6613675951957703, 0.6738824248313904, ...]</code> |
|
326 |
+
| <code>I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.</code> | <code>He quedado conmovido por esta conferencia, y deseo agradecer a todos ustedes sus amables comentarios acerca de lo que tenía que decir la otra noche.</code> | <code>[-0.2532017230987549, 0.04791336879134178, -0.1317490190267563, -0.7357572913169861, 0.23663584887981415, ...]</code> |
|
327 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
328 |
+
|
329 |
+
### Training Hyperparameters
|
330 |
+
#### Non-Default Hyperparameters
|
331 |
+
|
332 |
+
- `eval_strategy`: steps
|
333 |
+
- `per_device_train_batch_size`: 64
|
334 |
+
- `per_device_eval_batch_size`: 64
|
335 |
+
- `learning_rate`: 2e-05
|
336 |
+
- `num_train_epochs`: 5
|
337 |
+
- `warmup_ratio`: 0.1
|
338 |
+
- `bf16`: True
|
339 |
+
|
340 |
+
#### All Hyperparameters
|
341 |
+
<details><summary>Click to expand</summary>
|
342 |
+
|
343 |
+
- `overwrite_output_dir`: False
|
344 |
+
- `do_predict`: False
|
345 |
+
- `eval_strategy`: steps
|
346 |
+
- `prediction_loss_only`: True
|
347 |
+
- `per_device_train_batch_size`: 64
|
348 |
+
- `per_device_eval_batch_size`: 64
|
349 |
+
- `per_gpu_train_batch_size`: None
|
350 |
+
- `per_gpu_eval_batch_size`: None
|
351 |
+
- `gradient_accumulation_steps`: 1
|
352 |
+
- `eval_accumulation_steps`: None
|
353 |
+
- `torch_empty_cache_steps`: None
|
354 |
+
- `learning_rate`: 2e-05
|
355 |
+
- `weight_decay`: 0.0
|
356 |
+
- `adam_beta1`: 0.9
|
357 |
+
- `adam_beta2`: 0.999
|
358 |
+
- `adam_epsilon`: 1e-08
|
359 |
+
- `max_grad_norm`: 1.0
|
360 |
+
- `num_train_epochs`: 5
|
361 |
+
- `max_steps`: -1
|
362 |
+
- `lr_scheduler_type`: linear
|
363 |
+
- `lr_scheduler_kwargs`: {}
|
364 |
+
- `warmup_ratio`: 0.1
|
365 |
+
- `warmup_steps`: 0
|
366 |
+
- `log_level`: passive
|
367 |
+
- `log_level_replica`: warning
|
368 |
+
- `log_on_each_node`: True
|
369 |
+
- `logging_nan_inf_filter`: True
|
370 |
+
- `save_safetensors`: True
|
371 |
+
- `save_on_each_node`: False
|
372 |
+
- `save_only_model`: False
|
373 |
+
- `restore_callback_states_from_checkpoint`: False
|
374 |
+
- `no_cuda`: False
|
375 |
+
- `use_cpu`: False
|
376 |
+
- `use_mps_device`: False
|
377 |
+
- `seed`: 42
|
378 |
+
- `data_seed`: None
|
379 |
+
- `jit_mode_eval`: False
|
380 |
+
- `use_ipex`: False
|
381 |
+
- `bf16`: True
|
382 |
+
- `fp16`: False
|
383 |
+
- `fp16_opt_level`: O1
|
384 |
+
- `half_precision_backend`: auto
|
385 |
+
- `bf16_full_eval`: False
|
386 |
+
- `fp16_full_eval`: False
|
387 |
+
- `tf32`: None
|
388 |
+
- `local_rank`: 0
|
389 |
+
- `ddp_backend`: None
|
390 |
+
- `tpu_num_cores`: None
|
391 |
+
- `tpu_metrics_debug`: False
|
392 |
+
- `debug`: []
|
393 |
+
- `dataloader_drop_last`: False
|
394 |
+
- `dataloader_num_workers`: 0
|
395 |
+
- `dataloader_prefetch_factor`: None
|
396 |
+
- `past_index`: -1
|
397 |
+
- `disable_tqdm`: False
|
398 |
+
- `remove_unused_columns`: True
|
399 |
+
- `label_names`: None
|
400 |
+
- `load_best_model_at_end`: False
|
401 |
+
- `ignore_data_skip`: False
|
402 |
+
- `fsdp`: []
|
403 |
+
- `fsdp_min_num_params`: 0
|
404 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
405 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
406 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
407 |
+
- `deepspeed`: None
|
408 |
+
- `label_smoothing_factor`: 0.0
|
409 |
+
- `optim`: adamw_torch
|
410 |
+
- `optim_args`: None
|
411 |
+
- `adafactor`: False
|
412 |
+
- `group_by_length`: False
|
413 |
+
- `length_column_name`: length
|
414 |
+
- `ddp_find_unused_parameters`: None
|
415 |
+
- `ddp_bucket_cap_mb`: None
|
416 |
+
- `ddp_broadcast_buffers`: False
|
417 |
+
- `dataloader_pin_memory`: True
|
418 |
+
- `dataloader_persistent_workers`: False
|
419 |
+
- `skip_memory_metrics`: True
|
420 |
+
- `use_legacy_prediction_loop`: False
|
421 |
+
- `push_to_hub`: False
|
422 |
+
- `resume_from_checkpoint`: None
|
423 |
+
- `hub_model_id`: None
|
424 |
+
- `hub_strategy`: every_save
|
425 |
+
- `hub_private_repo`: False
|
426 |
+
- `hub_always_push`: False
|
427 |
+
- `gradient_checkpointing`: False
|
428 |
+
- `gradient_checkpointing_kwargs`: None
|
429 |
+
- `include_inputs_for_metrics`: False
|
430 |
+
- `include_for_metrics`: []
|
431 |
+
- `eval_do_concat_batches`: True
|
432 |
+
- `fp16_backend`: auto
|
433 |
+
- `push_to_hub_model_id`: None
|
434 |
+
- `push_to_hub_organization`: None
|
435 |
+
- `mp_parameters`:
|
436 |
+
- `auto_find_batch_size`: False
|
437 |
+
- `full_determinism`: False
|
438 |
+
- `torchdynamo`: None
|
439 |
+
- `ray_scope`: last
|
440 |
+
- `ddp_timeout`: 1800
|
441 |
+
- `torch_compile`: False
|
442 |
+
- `torch_compile_backend`: None
|
443 |
+
- `torch_compile_mode`: None
|
444 |
+
- `dispatch_batches`: None
|
445 |
+
- `split_batches`: None
|
446 |
+
- `include_tokens_per_second`: False
|
447 |
+
- `include_num_input_tokens_seen`: False
|
448 |
+
- `neftune_noise_alpha`: None
|
449 |
+
- `optim_target_modules`: None
|
450 |
+
- `batch_eval_metrics`: False
|
451 |
+
- `eval_on_start`: False
|
452 |
+
- `use_liger_kernel`: False
|
453 |
+
- `eval_use_gather_object`: False
|
454 |
+
- `average_tokens_across_devices`: False
|
455 |
+
- `prompts`: None
|
456 |
+
- `batch_sampler`: batch_sampler
|
457 |
+
- `multi_dataset_batch_sampler`: proportional
|
458 |
+
|
459 |
+
</details>
|
460 |
+
|
461 |
+
### Training Logs
|
462 |
+
<details><summary>Click to expand</summary>
|
463 |
+
|
464 |
+
| Epoch | Step | Training Loss | en-es loss | en-es_negative_mse | en-es_mean_accuracy | sts17-es-en-test_spearman_cosine |
|
465 |
+
|:------:|:-----:|:-------------:|:----------:|:------------------:|:-------------------:|:--------------------------------:|
|
466 |
+
| 0.0158 | 100 | 0.6528 | - | - | - | - |
|
467 |
+
| 0.0316 | 200 | 0.5634 | - | - | - | - |
|
468 |
+
| 0.0474 | 300 | 0.4418 | - | - | - | - |
|
469 |
+
| 0.0632 | 400 | 0.3009 | - | - | - | - |
|
470 |
+
| 0.0790 | 500 | 0.2744 | - | - | - | - |
|
471 |
+
| 0.0948 | 600 | 0.2677 | - | - | - | - |
|
472 |
+
| 0.1106 | 700 | 0.2661 | - | - | - | - |
|
473 |
+
| 0.1264 | 800 | 0.2614 | - | - | - | - |
|
474 |
+
| 0.1422 | 900 | 0.2583 | - | - | - | - |
|
475 |
+
| 0.1580 | 1000 | 0.2582 | - | - | - | - |
|
476 |
+
| 0.1738 | 1100 | 0.2579 | - | - | - | - |
|
477 |
+
| 0.1896 | 1200 | 0.256 | - | - | - | - |
|
478 |
+
| 0.2054 | 1300 | 0.2511 | - | - | - | - |
|
479 |
+
| 0.2212 | 1400 | 0.2467 | - | - | - | - |
|
480 |
+
| 0.2370 | 1500 | 0.2423 | - | - | - | - |
|
481 |
+
| 0.2528 | 1600 | 0.2364 | - | - | - | - |
|
482 |
+
| 0.2686 | 1700 | 0.2305 | - | - | - | - |
|
483 |
+
| 0.2845 | 1800 | 0.2248 | - | - | - | - |
|
484 |
+
| 0.3003 | 1900 | 0.2184 | - | - | - | - |
|
485 |
+
| 0.3161 | 2000 | 0.2143 | - | - | - | - |
|
486 |
+
| 0.3319 | 2100 | 0.2098 | - | - | - | - |
|
487 |
+
| 0.3477 | 2200 | 0.2055 | - | - | - | - |
|
488 |
+
| 0.3635 | 2300 | 0.1999 | - | - | - | - |
|
489 |
+
| 0.3793 | 2400 | 0.1965 | - | - | - | - |
|
490 |
+
| 0.3951 | 2500 | 0.1919 | - | - | - | - |
|
491 |
+
| 0.4109 | 2600 | 0.1889 | - | - | - | - |
|
492 |
+
| 0.4267 | 2700 | 0.1858 | - | - | - | - |
|
493 |
+
| 0.4425 | 2800 | 0.1826 | - | - | - | - |
|
494 |
+
| 0.4583 | 2900 | 0.18 | - | - | - | - |
|
495 |
+
| 0.4741 | 3000 | 0.1774 | - | - | - | - |
|
496 |
+
| 0.4899 | 3100 | 0.1758 | - | - | - | - |
|
497 |
+
| 0.5057 | 3200 | 0.1738 | - | - | - | - |
|
498 |
+
| 0.5215 | 3300 | 0.1706 | - | - | - | - |
|
499 |
+
| 0.5373 | 3400 | 0.1678 | - | - | - | - |
|
500 |
+
| 0.5531 | 3500 | 0.1664 | - | - | - | - |
|
501 |
+
| 0.5689 | 3600 | 0.1647 | - | - | - | - |
|
502 |
+
| 0.5847 | 3700 | 0.163 | - | - | - | - |
|
503 |
+
| 0.6005 | 3800 | 0.1605 | - | - | - | - |
|
504 |
+
| 0.6163 | 3900 | 0.1594 | - | - | - | - |
|
505 |
+
| 0.6321 | 4000 | 0.1576 | - | - | - | - |
|
506 |
+
| 0.6479 | 4100 | 0.1561 | - | - | - | - |
|
507 |
+
| 0.6637 | 4200 | 0.1541 | - | - | - | - |
|
508 |
+
| 0.6795 | 4300 | 0.1545 | - | - | - | - |
|
509 |
+
| 0.6953 | 4400 | 0.1535 | - | - | - | - |
|
510 |
+
| 0.7111 | 4500 | 0.1523 | - | - | - | - |
|
511 |
+
| 0.7269 | 4600 | 0.1502 | - | - | - | - |
|
512 |
+
| 0.7427 | 4700 | 0.1487 | - | - | - | - |
|
513 |
+
| 0.7585 | 4800 | 0.1486 | - | - | - | - |
|
514 |
+
| 0.7743 | 4900 | 0.1477 | - | - | - | - |
|
515 |
+
| 0.7901 | 5000 | 0.1465 | 0.1390 | -14.681906 | 0.9803 | 0.6371 |
|
516 |
+
| 0.8059 | 5100 | 0.1469 | - | - | - | - |
|
517 |
+
| 0.8217 | 5200 | 0.1449 | - | - | - | - |
|
518 |
+
| 0.8375 | 5300 | 0.1437 | - | - | - | - |
|
519 |
+
| 0.8534 | 5400 | 0.142 | - | - | - | - |
|
520 |
+
| 0.8692 | 5500 | 0.1423 | - | - | - | - |
|
521 |
+
| 0.8850 | 5600 | 0.1424 | - | - | - | - |
|
522 |
+
| 0.9008 | 5700 | 0.1415 | - | - | - | - |
|
523 |
+
| 0.9166 | 5800 | 0.1407 | - | - | - | - |
|
524 |
+
| 0.9324 | 5900 | 0.1396 | - | - | - | - |
|
525 |
+
| 0.9482 | 6000 | 0.1388 | - | - | - | - |
|
526 |
+
| 0.9640 | 6100 | 0.1391 | - | - | - | - |
|
527 |
+
| 0.9798 | 6200 | 0.1368 | - | - | - | - |
|
528 |
+
| 0.9956 | 6300 | 0.1366 | - | - | - | - |
|
529 |
+
| 1.0114 | 6400 | 0.1367 | - | - | - | - |
|
530 |
+
| 1.0272 | 6500 | 0.1343 | - | - | - | - |
|
531 |
+
| 1.0430 | 6600 | 0.1341 | - | - | - | - |
|
532 |
+
| 1.0588 | 6700 | 0.1349 | - | - | - | - |
|
533 |
+
| 1.0746 | 6800 | 0.1327 | - | - | - | - |
|
534 |
+
| 1.0904 | 6900 | 0.1334 | - | - | - | - |
|
535 |
+
| 1.1062 | 7000 | 0.133 | - | - | - | - |
|
536 |
+
| 1.1220 | 7100 | 0.1316 | - | - | - | - |
|
537 |
+
| 1.1378 | 7200 | 0.1308 | - | - | - | - |
|
538 |
+
| 1.1536 | 7300 | 0.1316 | - | - | - | - |
|
539 |
+
| 1.1694 | 7400 | 0.1298 | - | - | - | - |
|
540 |
+
| 1.1852 | 7500 | 0.1294 | - | - | - | - |
|
541 |
+
| 1.2010 | 7600 | 0.1295 | - | - | - | - |
|
542 |
+
| 1.2168 | 7700 | 0.13 | - | - | - | - |
|
543 |
+
| 1.2326 | 7800 | 0.1285 | - | - | - | - |
|
544 |
+
| 1.2484 | 7900 | 0.1278 | - | - | - | - |
|
545 |
+
| 1.2642 | 8000 | 0.1272 | - | - | - | - |
|
546 |
+
| 1.2800 | 8100 | 0.1262 | - | - | - | - |
|
547 |
+
| 1.2958 | 8200 | 0.1275 | - | - | - | - |
|
548 |
+
| 1.3116 | 8300 | 0.1266 | - | - | - | - |
|
549 |
+
| 1.3274 | 8400 | 0.1252 | - | - | - | - |
|
550 |
+
| 1.3432 | 8500 | 0.1256 | - | - | - | - |
|
551 |
+
| 1.3590 | 8600 | 0.1246 | - | - | - | - |
|
552 |
+
| 1.3748 | 8700 | 0.1254 | - | - | - | - |
|
553 |
+
| 1.3906 | 8800 | 0.1242 | - | - | - | - |
|
554 |
+
| 1.4064 | 8900 | 0.1249 | - | - | - | - |
|
555 |
+
| 1.4223 | 9000 | 0.1233 | - | - | - | - |
|
556 |
+
| 1.4381 | 9100 | 0.1238 | - | - | - | - |
|
557 |
+
| 1.4539 | 9200 | 0.1231 | - | - | - | - |
|
558 |
+
| 1.4697 | 9300 | 0.122 | - | - | - | - |
|
559 |
+
| 1.4855 | 9400 | 0.1217 | - | - | - | - |
|
560 |
+
| 1.5013 | 9500 | 0.1225 | - | - | - | - |
|
561 |
+
| 1.5171 | 9600 | 0.1213 | - | - | - | - |
|
562 |
+
| 1.5329 | 9700 | 0.1208 | - | - | - | - |
|
563 |
+
| 1.5487 | 9800 | 0.1214 | - | - | - | - |
|
564 |
+
| 1.5645 | 9900 | 0.1205 | - | - | - | - |
|
565 |
+
| 1.5803 | 10000 | 0.12 | 0.1120 | -12.20076 | 0.9843 | 0.7137 |
|
566 |
+
| 1.5961 | 10100 | 0.1205 | - | - | - | - |
|
567 |
+
| 1.6119 | 10200 | 0.12 | - | - | - | - |
|
568 |
+
| 1.6277 | 10300 | 0.1187 | - | - | - | - |
|
569 |
+
| 1.6435 | 10400 | 0.1184 | - | - | - | - |
|
570 |
+
| 1.6593 | 10500 | 0.1178 | - | - | - | - |
|
571 |
+
| 1.6751 | 10600 | 0.1188 | - | - | - | - |
|
572 |
+
| 1.6909 | 10700 | 0.1184 | - | - | - | - |
|
573 |
+
| 1.7067 | 10800 | 0.1168 | - | - | - | - |
|
574 |
+
| 1.7225 | 10900 | 0.1175 | - | - | - | - |
|
575 |
+
| 1.7383 | 11000 | 0.1158 | - | - | - | - |
|
576 |
+
| 1.7541 | 11100 | 0.1159 | - | - | - | - |
|
577 |
+
| 1.7699 | 11200 | 0.1178 | - | - | - | - |
|
578 |
+
| 1.7857 | 11300 | 0.1158 | - | - | - | - |
|
579 |
+
| 1.8015 | 11400 | 0.1161 | - | - | - | - |
|
580 |
+
| 1.8173 | 11500 | 0.1151 | - | - | - | - |
|
581 |
+
| 1.8331 | 11600 | 0.1147 | - | - | - | - |
|
582 |
+
| 1.8489 | 11700 | 0.1152 | - | - | - | - |
|
583 |
+
| 1.8647 | 11800 | 0.1144 | - | - | - | - |
|
584 |
+
| 1.8805 | 11900 | 0.1145 | - | - | - | - |
|
585 |
+
| 1.8963 | 12000 | 0.1144 | - | - | - | - |
|
586 |
+
| 1.9121 | 12100 | 0.1139 | - | - | - | - |
|
587 |
+
| 1.9279 | 12200 | 0.1144 | - | - | - | - |
|
588 |
+
| 1.9437 | 12300 | 0.1144 | - | - | - | - |
|
589 |
+
| 1.9595 | 12400 | 0.1124 | - | - | - | - |
|
590 |
+
| 1.9753 | 12500 | 0.1134 | - | - | - | - |
|
591 |
+
| 1.9912 | 12600 | 0.1133 | - | - | - | - |
|
592 |
+
| 2.0070 | 12700 | 0.1125 | - | - | - | - |
|
593 |
+
| 2.0228 | 12800 | 0.1108 | - | - | - | - |
|
594 |
+
| 2.0386 | 12900 | 0.1112 | - | - | - | - |
|
595 |
+
| 2.0544 | 13000 | 0.1109 | - | - | - | - |
|
596 |
+
| 2.0702 | 13100 | 0.1105 | - | - | - | - |
|
597 |
+
| 2.0860 | 13200 | 0.1112 | - | - | - | - |
|
598 |
+
| 2.1018 | 13300 | 0.1105 | - | - | - | - |
|
599 |
+
| 2.1176 | 13400 | 0.1105 | - | - | - | - |
|
600 |
+
| 2.1334 | 13500 | 0.11 | - | - | - | - |
|
601 |
+
| 2.1492 | 13600 | 0.1096 | - | - | - | - |
|
602 |
+
| 2.1650 | 13700 | 0.1098 | - | - | - | - |
|
603 |
+
| 2.1808 | 13800 | 0.1093 | - | - | - | - |
|
604 |
+
| 2.1966 | 13900 | 0.1089 | - | - | - | - |
|
605 |
+
| 2.2124 | 14000 | 0.1091 | - | - | - | - |
|
606 |
+
| 2.2282 | 14100 | 0.1091 | - | - | - | - |
|
607 |
+
| 2.2440 | 14200 | 0.1086 | - | - | - | - |
|
608 |
+
| 2.2598 | 14300 | 0.1089 | - | - | - | - |
|
609 |
+
| 2.2756 | 14400 | 0.1087 | - | - | - | - |
|
610 |
+
| 2.2914 | 14500 | 0.1083 | - | - | - | - |
|
611 |
+
| 2.3072 | 14600 | 0.1091 | - | - | - | - |
|
612 |
+
| 2.3230 | 14700 | 0.1083 | - | - | - | - |
|
613 |
+
| 2.3388 | 14800 | 0.1088 | - | - | - | - |
|
614 |
+
| 2.3546 | 14900 | 0.1071 | - | - | - | - |
|
615 |
+
| 2.3704 | 15000 | 0.1085 | 0.1015 | -11.243325 | 0.9843 | 0.7625 |
|
616 |
+
| 2.3862 | 15100 | 0.1077 | - | - | - | - |
|
617 |
+
| 2.4020 | 15200 | 0.1076 | - | - | - | - |
|
618 |
+
| 2.4178 | 15300 | 0.108 | - | - | - | - |
|
619 |
+
| 2.4336 | 15400 | 0.1066 | - | - | - | - |
|
620 |
+
| 2.4494 | 15500 | 0.1062 | - | - | - | - |
|
621 |
+
| 2.4652 | 15600 | 0.1065 | - | - | - | - |
|
622 |
+
| 2.4810 | 15700 | 0.1058 | - | - | - | - |
|
623 |
+
| 2.4968 | 15800 | 0.1071 | - | - | - | - |
|
624 |
+
| 2.5126 | 15900 | 0.1071 | - | - | - | - |
|
625 |
+
| 2.5284 | 16000 | 0.1066 | - | - | - | - |
|
626 |
+
| 2.5442 | 16100 | 0.1067 | - | - | - | - |
|
627 |
+
| 2.5601 | 16200 | 0.1057 | - | - | - | - |
|
628 |
+
| 2.5759 | 16300 | 0.106 | - | - | - | - |
|
629 |
+
| 2.5917 | 16400 | 0.1061 | - | - | - | - |
|
630 |
+
| 2.6075 | 16500 | 0.1047 | - | - | - | - |
|
631 |
+
| 2.6233 | 16600 | 0.1057 | - | - | - | - |
|
632 |
+
| 2.6391 | 16700 | 0.106 | - | - | - | - |
|
633 |
+
| 2.6549 | 16800 | 0.1055 | - | - | - | - |
|
634 |
+
| 2.6707 | 16900 | 0.105 | - | - | - | - |
|
635 |
+
| 2.6865 | 17000 | 0.1047 | - | - | - | - |
|
636 |
+
| 2.7023 | 17100 | 0.1042 | - | - | - | - |
|
637 |
+
| 2.7181 | 17200 | 0.1057 | - | - | - | - |
|
638 |
+
| 2.7339 | 17300 | 0.1051 | - | - | - | - |
|
639 |
+
| 2.7497 | 17400 | 0.1055 | - | - | - | - |
|
640 |
+
| 2.7655 | 17500 | 0.1047 | - | - | - | - |
|
641 |
+
| 2.7813 | 17600 | 0.1043 | - | - | - | - |
|
642 |
+
| 2.7971 | 17700 | 0.1034 | - | - | - | - |
|
643 |
+
| 2.8129 | 17800 | 0.1039 | - | - | - | - |
|
644 |
+
| 2.8287 | 17900 | 0.1038 | - | - | - | - |
|
645 |
+
| 2.8445 | 18000 | 0.1032 | - | - | - | - |
|
646 |
+
| 2.8603 | 18100 | 0.103 | - | - | - | - |
|
647 |
+
| 2.8761 | 18200 | 0.1035 | - | - | - | - |
|
648 |
+
| 2.8919 | 18300 | 0.1024 | - | - | - | - |
|
649 |
+
| 2.9077 | 18400 | 0.1032 | - | - | - | - |
|
650 |
+
| 2.9235 | 18500 | 0.1031 | - | - | - | - |
|
651 |
+
| 2.9393 | 18600 | 0.1034 | - | - | - | - |
|
652 |
+
| 2.9551 | 18700 | 0.1033 | - | - | - | - |
|
653 |
+
| 2.9709 | 18800 | 0.1036 | - | - | - | - |
|
654 |
+
| 2.9867 | 18900 | 0.1029 | - | - | - | - |
|
655 |
+
| 3.0025 | 19000 | 0.1024 | - | - | - | - |
|
656 |
+
| 3.0183 | 19100 | 0.1017 | - | - | - | - |
|
657 |
+
| 3.0341 | 19200 | 0.1012 | - | - | - | - |
|
658 |
+
| 3.0499 | 19300 | 0.1016 | - | - | - | - |
|
659 |
+
| 3.0657 | 19400 | 0.1012 | - | - | - | - |
|
660 |
+
| 3.0815 | 19500 | 0.1009 | - | - | - | - |
|
661 |
+
| 3.0973 | 19600 | 0.1015 | - | - | - | - |
|
662 |
+
| 3.1131 | 19700 | 0.1014 | - | - | - | - |
|
663 |
+
| 3.1290 | 19800 | 0.1004 | - | - | - | - |
|
664 |
+
| 3.1448 | 19900 | 0.1011 | - | - | - | - |
|
665 |
+
| 3.1606 | 20000 | 0.1006 | 0.0952 | -10.662492 | 0.9879 | 0.7811 |
|
666 |
+
| 3.1764 | 20100 | 0.1007 | - | - | - | - |
|
667 |
+
| 3.1922 | 20200 | 0.1015 | - | - | - | - |
|
668 |
+
| 3.2080 | 20300 | 0.1005 | - | - | - | - |
|
669 |
+
| 3.2238 | 20400 | 0.1017 | - | - | - | - |
|
670 |
+
| 3.2396 | 20500 | 0.1012 | - | - | - | - |
|
671 |
+
| 3.2554 | 20600 | 0.0998 | - | - | - | - |
|
672 |
+
| 3.2712 | 20700 | 0.0997 | - | - | - | - |
|
673 |
+
| 3.2870 | 20800 | 0.1001 | - | - | - | - |
|
674 |
+
| 3.3028 | 20900 | 0.1009 | - | - | - | - |
|
675 |
+
| 3.3186 | 21000 | 0.1 | - | - | - | - |
|
676 |
+
| 3.3344 | 21100 | 0.1001 | - | - | - | - |
|
677 |
+
| 3.3502 | 21200 | 0.1008 | - | - | - | - |
|
678 |
+
| 3.3660 | 21300 | 0.0996 | - | - | - | - |
|
679 |
+
| 3.3818 | 21400 | 0.0993 | - | - | - | - |
|
680 |
+
| 3.3976 | 21500 | 0.1004 | - | - | - | - |
|
681 |
+
| 3.4134 | 21600 | 0.0996 | - | - | - | - |
|
682 |
+
| 3.4292 | 21700 | 0.0993 | - | - | - | - |
|
683 |
+
| 3.4450 | 21800 | 0.0997 | - | - | - | - |
|
684 |
+
| 3.4608 | 21900 | 0.0997 | - | - | - | - |
|
685 |
+
| 3.4766 | 22000 | 0.0997 | - | - | - | - |
|
686 |
+
| 3.4924 | 22100 | 0.0984 | - | - | - | - |
|
687 |
+
| 3.5082 | 22200 | 0.0999 | - | - | - | - |
|
688 |
+
| 3.5240 | 22300 | 0.099 | - | - | - | - |
|
689 |
+
| 3.5398 | 22400 | 0.0992 | - | - | - | - |
|
690 |
+
| 3.5556 | 22500 | 0.0988 | - | - | - | - |
|
691 |
+
| 3.5714 | 22600 | 0.0989 | - | - | - | - |
|
692 |
+
| 3.5872 | 22700 | 0.0989 | - | - | - | - |
|
693 |
+
| 3.6030 | 22800 | 0.0978 | - | - | - | - |
|
694 |
+
| 3.6188 | 22900 | 0.0987 | - | - | - | - |
|
695 |
+
| 3.6346 | 23000 | 0.0997 | - | - | - | - |
|
696 |
+
| 3.6504 | 23100 | 0.0994 | - | - | - | - |
|
697 |
+
| 3.6662 | 23200 | 0.0984 | - | - | - | - |
|
698 |
+
| 3.6820 | 23300 | 0.0985 | - | - | - | - |
|
699 |
+
| 3.6979 | 23400 | 0.0983 | - | - | - | - |
|
700 |
+
| 3.7137 | 23500 | 0.0992 | - | - | - | - |
|
701 |
+
| 3.7295 | 23600 | 0.0983 | - | - | - | - |
|
702 |
+
| 3.7453 | 23700 | 0.0987 | - | - | - | - |
|
703 |
+
| 3.7611 | 23800 | 0.0983 | - | - | - | - |
|
704 |
+
| 3.7769 | 23900 | 0.0969 | - | - | - | - |
|
705 |
+
| 3.7927 | 24000 | 0.0984 | - | - | - | - |
|
706 |
+
| 3.8085 | 24100 | 0.0976 | - | - | - | - |
|
707 |
+
| 3.8243 | 24200 | 0.0984 | - | - | - | - |
|
708 |
+
| 3.8401 | 24300 | 0.0974 | - | - | - | - |
|
709 |
+
| 3.8559 | 24400 | 0.0982 | - | - | - | - |
|
710 |
+
| 3.8717 | 24500 | 0.0983 | - | - | - | - |
|
711 |
+
| 3.8875 | 24600 | 0.0986 | - | - | - | - |
|
712 |
+
| 3.9033 | 24700 | 0.0977 | - | - | - | - |
|
713 |
+
| 3.9191 | 24800 | 0.0974 | - | - | - | - |
|
714 |
+
| 3.9349 | 24900 | 0.0979 | - | - | - | - |
|
715 |
+
| 3.9507 | 25000 | 0.0974 | 0.0916 | -10.330441 | 0.9904 | 0.7840 |
|
716 |
+
| 3.9665 | 25100 | 0.0974 | - | - | - | - |
|
717 |
+
| 3.9823 | 25200 | 0.097 | - | - | - | - |
|
718 |
+
| 3.9981 | 25300 | 0.0978 | - | - | - | - |
|
719 |
+
| 4.0139 | 25400 | 0.0969 | - | - | - | - |
|
720 |
+
| 4.0297 | 25500 | 0.0966 | - | - | - | - |
|
721 |
+
| 4.0455 | 25600 | 0.0965 | - | - | - | - |
|
722 |
+
| 4.0613 | 25700 | 0.0974 | - | - | - | - |
|
723 |
+
| 4.0771 | 25800 | 0.0966 | - | - | - | - |
|
724 |
+
| 4.0929 | 25900 | 0.0964 | - | - | - | - |
|
725 |
+
| 4.1087 | 26000 | 0.0961 | - | - | - | - |
|
726 |
+
| 4.1245 | 26100 | 0.0958 | - | - | - | - |
|
727 |
+
| 4.1403 | 26200 | 0.0964 | - | - | - | - |
|
728 |
+
| 4.1561 | 26300 | 0.097 | - | - | - | - |
|
729 |
+
| 4.1719 | 26400 | 0.0967 | - | - | - | - |
|
730 |
+
| 4.1877 | 26500 | 0.0968 | - | - | - | - |
|
731 |
+
| 4.2035 | 26600 | 0.0965 | - | - | - | - |
|
732 |
+
| 4.2193 | 26700 | 0.0956 | - | - | - | - |
|
733 |
+
| 4.2351 | 26800 | 0.0963 | - | - | - | - |
|
734 |
+
| 4.2509 | 26900 | 0.0958 | - | - | - | - |
|
735 |
+
| 4.2668 | 27000 | 0.0969 | - | - | - | - |
|
736 |
+
| 4.2826 | 27100 | 0.0951 | - | - | - | - |
|
737 |
+
| 4.2984 | 27200 | 0.0958 | - | - | - | - |
|
738 |
+
| 4.3142 | 27300 | 0.0956 | - | - | - | - |
|
739 |
+
| 4.3300 | 27400 | 0.0965 | - | - | - | - |
|
740 |
+
| 4.3458 | 27500 | 0.0952 | - | - | - | - |
|
741 |
+
| 4.3616 | 27600 | 0.0956 | - | - | - | - |
|
742 |
+
| 4.3774 | 27700 | 0.0956 | - | - | - | - |
|
743 |
+
| 4.3932 | 27800 | 0.0966 | - | - | - | - |
|
744 |
+
| 4.4090 | 27900 | 0.0972 | - | - | - | - |
|
745 |
+
| 4.4248 | 28000 | 0.0954 | - | - | - | - |
|
746 |
+
| 4.4406 | 28100 | 0.0961 | - | - | - | - |
|
747 |
+
| 4.4564 | 28200 | 0.0963 | - | - | - | - |
|
748 |
+
| 4.4722 | 28300 | 0.0958 | - | - | - | - |
|
749 |
+
| 4.4880 | 28400 | 0.0961 | - | - | - | - |
|
750 |
+
| 4.5038 | 28500 | 0.0961 | - | - | - | - |
|
751 |
+
| 4.5196 | 28600 | 0.0956 | - | - | - | - |
|
752 |
+
| 4.5354 | 28700 | 0.0955 | - | - | - | - |
|
753 |
+
| 4.5512 | 28800 | 0.0957 | - | - | - | - |
|
754 |
+
| 4.5670 | 28900 | 0.0953 | - | - | - | - |
|
755 |
+
| 4.5828 | 29000 | 0.0952 | - | - | - | - |
|
756 |
+
| 4.5986 | 29100 | 0.0964 | - | - | - | - |
|
757 |
+
| 4.6144 | 29200 | 0.0955 | - | - | - | - |
|
758 |
+
| 4.6302 | 29300 | 0.0948 | - | - | - | - |
|
759 |
+
| 4.6460 | 29400 | 0.0946 | - | - | - | - |
|
760 |
+
| 4.6618 | 29500 | 0.0953 | - | - | - | - |
|
761 |
+
| 4.6776 | 29600 | 0.0954 | - | - | - | - |
|
762 |
+
| 4.6934 | 29700 | 0.0956 | - | - | - | - |
|
763 |
+
| 4.7092 | 29800 | 0.0958 | - | - | - | - |
|
764 |
+
| 4.7250 | 29900 | 0.0956 | - | - | - | - |
|
765 |
+
| 4.7408 | 30000 | 0.0962 | 0.0900 | -10.183619 | 0.9894 | 0.7903 |
|
766 |
+
| 4.7566 | 30100 | 0.0953 | - | - | - | - |
|
767 |
+
| 4.7724 | 30200 | 0.0959 | - | - | - | - |
|
768 |
+
| 4.7882 | 30300 | 0.0949 | - | - | - | - |
|
769 |
+
| 4.8040 | 30400 | 0.0958 | - | - | - | - |
|
770 |
+
| 4.8198 | 30500 | 0.0952 | - | - | - | - |
|
771 |
+
| 4.8357 | 30600 | 0.0952 | - | - | - | - |
|
772 |
+
| 4.8515 | 30700 | 0.095 | - | - | - | - |
|
773 |
+
| 4.8673 | 30800 | 0.0949 | - | - | - | - |
|
774 |
+
| 4.8831 | 30900 | 0.0949 | - | - | - | - |
|
775 |
+
| 4.8989 | 31000 | 0.0953 | - | - | - | - |
|
776 |
+
| 4.9147 | 31100 | 0.0955 | - | - | - | - |
|
777 |
+
| 4.9305 | 31200 | 0.0964 | - | - | - | - |
|
778 |
+
| 4.9463 | 31300 | 0.0955 | - | - | - | - |
|
779 |
+
| 4.9621 | 31400 | 0.0955 | - | - | - | - |
|
780 |
+
| 4.9779 | 31500 | 0.0954 | - | - | - | - |
|
781 |
+
| 4.9937 | 31600 | 0.0959 | - | - | - | - |
|
782 |
+
|
783 |
+
</details>
|
784 |
+
|
785 |
+
### Framework Versions
|
786 |
+
- Python: 3.10.12
|
787 |
+
- Sentence Transformers: 3.3.1
|
788 |
+
- Transformers: 4.46.3
|
789 |
+
- PyTorch: 2.5.1+cu124
|
790 |
+
- Accelerate: 1.2.1
|
791 |
+
- Datasets: 3.2.0
|
792 |
+
- Tokenizers: 0.20.3
|
793 |
+
|
794 |
+
## Citation
|
795 |
+
|
796 |
+
### BibTeX
|
797 |
+
|
798 |
+
#### Sentence Transformers
|
799 |
+
```bibtex
|
800 |
+
@inproceedings{reimers-2019-sentence-bert,
|
801 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
802 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
803 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
804 |
+
month = "11",
|
805 |
+
year = "2019",
|
806 |
+
publisher = "Association for Computational Linguistics",
|
807 |
+
url = "https://arxiv.org/abs/1908.10084",
|
808 |
+
}
|
809 |
+
```
|
810 |
+
|
811 |
+
#### MSELoss
|
812 |
+
```bibtex
|
813 |
+
@inproceedings{reimers-2020-multilingual-sentence-bert,
|
814 |
+
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
|
815 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
816 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
|
817 |
+
month = "11",
|
818 |
+
year = "2020",
|
819 |
+
publisher = "Association for Computational Linguistics",
|
820 |
+
url = "https://arxiv.org/abs/2004.09813",
|
821 |
+
}
|
822 |
+
```
|
823 |
+
|
824 |
+
<!--
|
825 |
+
## Glossary
|
826 |
+
|
827 |
+
*Clearly define terms in order to be accessible across audiences.*
|
828 |
+
-->
|
829 |
+
|
830 |
+
<!--
|
831 |
+
## Model Card Authors
|
832 |
+
|
833 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
834 |
+
-->
|
835 |
+
|
836 |
+
<!--
|
837 |
+
## Model Card Contact
|
838 |
+
|
839 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
840 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "xlm-roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.46.3",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.46.3",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b99af4904ed6ede3a73a8bf825dc644d79755f547fbd95cb7e46b629a5b1707
|
3 |
+
size 1112197096
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
53 |
+
"unk_token": "<unk>"
|
54 |
+
}
|