vahidthegreat
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -41,6 +41,9 @@ from transformers import (
|
|
41 |
TrainingArguments,
|
42 |
AutoConfig,
|
43 |
)
|
|
|
|
|
|
|
44 |
```
|
45 |
|
46 |
|
@@ -77,7 +80,7 @@ base_model = SiameseNetworkMPNet(model_name=base_model_name, tokenizer=tokenizer
|
|
77 |
|
78 |
# Load and apply LoRA weights
|
79 |
lora_model = SiameseNetworkMPNet(model_name=base_model_name, tokenizer=tokenizer)
|
80 |
-
lora_model = PeftModel.from_pretrained(
|
81 |
lora_model = lora_model.merge_and_unload()
|
82 |
|
83 |
base_model.eval()
|
@@ -109,14 +112,39 @@ def two_sentence_similarity(model, tokenizer, text1, text2):
|
|
109 |
text1 = "I love pineapple on pizza"
|
110 |
text2 = "I hate pineapple on pizza"
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
print(f"For Base Model sentences: '{text1}' and '{text2}'")
|
113 |
two_sentence_similarity(base_model, tokenizer, text1, text2)
|
114 |
print(f"\n\nFor FineTuned Model sentences: '{text1}' and '{text2}'")
|
115 |
two_sentence_similarity(lora_model, tokenizer, text1, text2)
|
116 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
## Key Applications
|
121 |
|
122 |
This stance-aware sentence transformer model can be applied to various fields within social computing and opinion analysis. Here are some key applications:
|
|
|
41 |
TrainingArguments,
|
42 |
AutoConfig,
|
43 |
)
|
44 |
+
import torch
|
45 |
+
import torch.nn as nn
|
46 |
+
import torch.nn.functional as F
|
47 |
```
|
48 |
|
49 |
|
|
|
80 |
|
81 |
# Load and apply LoRA weights
|
82 |
lora_model = SiameseNetworkMPNet(model_name=base_model_name, tokenizer=tokenizer)
|
83 |
+
lora_model = PeftModel.from_pretrained(lora_model, "vahidthegreat/StanceAware-SBERT")
|
84 |
lora_model = lora_model.merge_and_unload()
|
85 |
|
86 |
base_model.eval()
|
|
|
112 |
text1 = "I love pineapple on pizza"
|
113 |
text2 = "I hate pineapple on pizza"
|
114 |
|
115 |
+
print(f"For Base Model sentences: '{text1}' and '{text2}'")
|
116 |
+
two_sentence_similarity(base_model, tokenizer, text1, text2)
|
117 |
+
print(f"\nFor FineTuned Model sentences: '{text1}' and '{text2}'")
|
118 |
+
two_sentence_similarity(lora_model, tokenizer, text1, text2)
|
119 |
+
|
120 |
+
print('\n\n')
|
121 |
+
|
122 |
+
|
123 |
+
# Example sentences
|
124 |
+
text1 = "I love pineapple on pizza"
|
125 |
+
text2 = "I like pineapple on pizza"
|
126 |
+
|
127 |
print(f"For Base Model sentences: '{text1}' and '{text2}'")
|
128 |
two_sentence_similarity(base_model, tokenizer, text1, text2)
|
129 |
print(f"\n\nFor FineTuned Model sentences: '{text1}' and '{text2}'")
|
130 |
two_sentence_similarity(lora_model, tokenizer, text1, text2)
|
131 |
```
|
132 |
+
```output
|
133 |
+
For Base Model sentences: 'I love pineapple on pizza' and 'I hate pineapple on pizza'
|
134 |
+
Cosine Similarity: 0.8590984344482422
|
135 |
+
|
136 |
+
For FineTuned Model sentences: 'I love pineapple on pizza' and 'I hate pineapple on pizza'
|
137 |
+
Cosine Similarity: 0.5732507705688477
|
138 |
|
139 |
|
140 |
|
141 |
+
For Base Model sentences: 'I love pineapple on pizza' and 'I like pineapple on pizza'
|
142 |
+
Cosine Similarity: 0.9773550033569336
|
143 |
+
|
144 |
+
For FineTuned Model sentences: 'I love pineapple on pizza' and 'I like pineapple on pizza'
|
145 |
+
Cosine Similarity: 0.9712905883789062
|
146 |
+
```
|
147 |
+
|
148 |
## Key Applications
|
149 |
|
150 |
This stance-aware sentence transformer model can be applied to various fields within social computing and opinion analysis. Here are some key applications:
|