File size: 7,324 Bytes
7886d18 552a125 7886d18 419ba3c 679182a 7886d18 552a125 7886d18 3a89443 c00b53e c2aaa2d 2470754 735c8ad aa84a25 05b1268 c00b53e 3a89443 7886d18 aad8879 7886d18 aad8879 7886d18 419ba3c 679182a 419ba3c 7886d18 16d91e6 7886d18 7c2c628 7886d18 419ba3c b723c6f 1c29bfa b723c6f 5db79d8 1c29bfa 5db79d8 b723c6f 1c29bfa 419ba3c b723c6f 7886d18 2a9d0da 7886d18 2ad5639 735c8ad aad8879 552a125 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
---
library_name: transformers
tags:
- mergekit
- merge
- llama
base_model:
- v000000/L3.1-8B-RP-Test-003-Task_Arithmetic
- v000000/L3.1-Niitorm-8B-t0.0001
- Sao10K/L3.1-8B-Niitama-v1.1
- arcee-ai/Llama-3.1-SuperNova-Lite
- akjindal53244/Llama-3.1-Storm-8B
- arcee-ai/Llama-Spark
- v000000/L3.1-8B-RP-Test-002-Task_Arithmetic
- grimjim/Llama-3-Instruct-abliteration-LoRA-8B
model-index:
- name: L3.1-Storniitova-8B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 78.17
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/L3.1-Storniitova-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 30.81
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/L3.1-Storniitova-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 13.29
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/L3.1-Storniitova-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.26
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/L3.1-Storniitova-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.96
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/L3.1-Storniitova-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 30.84
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=v000000/L3.1-Storniitova-8B
name: Open LLM Leaderboard
---
# Llama-3.1-Storniitova-8B
Storniitova-8B is a RP/Instruct model built on the foundation of Llama-3.1-SuperNova-Lite, which is distilled from the 405B parameter variant of Llama-3.1
By only changing the vector tasks, I attempt to retain the full 405B distillation while learning roleplaying capabilties.
# (GGUF) mradermacher quants:
* [GGUFs](https://huggingface.co/mradermacher/L3.1-Storniitova-8B-GGUF)
* [GGUFs imatrix](https://huggingface.co/mradermacher/L3.1-Storniitova-8B-i1-GGUF)
# (GGUF) QuantFactory quants:
* [GGUFs](https://huggingface.co/QuantFactory/L3.1-Storniitova-8B-GGUF)
-----------------------------------------------------------------------------------------------------------
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit) and other proprietary tools.
## Merge Details
### Merge Method
This model was merged using the <b>SLERP, Task_Arithmetic and NEARSWAP</b> merge method.
### Models Merged
The following models were included in the merge:
* [v000000/L3.1-Niitorm-8B-t0.0001](https://huggingface.co/v000000/L3.1-Niitorm-8B-t0.0001)
* [akjindal53244/Llama-3.1-Storm-8B](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B)
* [arcee-ai/Llama-Spark](https://huggingface.co/arcee-ai/Llama-Spark)
* [arcee-ai/Llama-3.1-SuperNova-Lite](https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite)
* [v000000/L3.1-8B-RP-Test-003-Task_Arithmetic](https://huggingface.co/v000000/L3.1-8B-RP-Test-003-Task_Arithmetic)
* [Sao10K/L3.1-8B-Niitama-v1.1](https://huggingface.co/Sao10K/L3.1-8B-Niitama-v1.1) + [grimjim/Llama-3-Instruct-abliteration-LoRA-8B](https://huggingface.co/grimjim/Llama-3-Instruct-abliteration-LoRA-8B)
* [v000000/L3.1-8B-RP-Test-002-Task_Arithmetic](https://huggingface.co/v000000/L3.1-8B-RP-Test-002-Task_Arithmetic) + [grimjim/Llama-3-Instruct-abliteration-LoRA-8B](https://huggingface.co/grimjim/Llama-3-Instruct-abliteration-LoRA-8B)
### Recipe
The following YAML configuration was used to produce this model:
```yaml
#Step1 - Add smarts to Niitama with alchemonaut's algorithm.
slices:
- sources:
- model: Sao10K/L3.1-8B-Niitama-v1.1+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
layer_range: [0, 32]
- model: akjindal53244/Llama-3.1-Storm-8B
layer_range: [0, 32]
merge_method: nearswap
base_model: Sao10K/L3.1-8B-Niitama-v1.1+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
parameters:
t:
- value: 0.0001
dtype: bfloat16
out_type: float16
#Step 2 - Learn vectors onto Supernova 0.4(Niitorm)
models:
- model: arcee-ai/Llama-3.1-SuperNova-Lite
parameters:
weight: 1.0
- model: v000000/L3.1-Niitorm-8B-t0.0001
parameters:
weight: 0.4
merge_method: task_arithmetic
base_model: arcee-ai/Llama-3.1-SuperNova-Lite
parameters:
normalize: false
dtype: float16
#Step 3 - Fully learn vectors onto Supernova 1.25(Niitorm)
models:
- model: arcee-ai/Llama-3.1-SuperNova-Lite
parameters:
weight: 0.0
- model: v000000/L3.1-Niitorm-8B-t0.0001
parameters:
weight: 1.25
merge_method: task_arithmetic
base_model: arcee-ai/Llama-3.1-SuperNova-Lite
parameters:
normalize: false
dtype: float16
#Step 4 - Merge checkpoints and keep output/input Supernova heavy
#Merge with a triangular slerp from sophosympatheia.
models:
- model: v000000/L3.1-8B-RP-Test-003-Task_Arithmetic
merge_method: slerp
base_model: v000000/L3.1-8B-RP-Test-002-Task_Arithmetic+grimjim/Llama-3-Instruct-abliteration-LoRA-8B
# This model needed some abliteration^
parameters:
t:
- value: [0, 0, 0.3, 0.4, 0.5, 0.6, 0.5, 0.4, 0.3, 0, 0]
dtype: float16
```
*SLERP distribution* used to smoothly blend the mostly Supernova base with the roleplay vectors:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64f74b6e6389380c77562762/GP2LMRvMkhVJwNDSEC4oU.png)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_v000000__L3.1-Storniitova-8B)
| Metric |Value|
|-------------------|----:|
|Avg. |28.06|
|IFEval (0-Shot) |78.17|
|BBH (3-Shot) |30.81|
|MATH Lvl 5 (4-Shot)|13.29|
|GPQA (0-shot) | 5.26|
|MuSR (0-shot) | 9.96|
|MMLU-PRO (5-shot) |30.84|
|