KenyaNonaka0210
commited on
Commit
·
778b7b6
1
Parent(s):
dc75fed
ok
Browse files- configuration_luxe.py +53 -0
- modeling_luxe.py +250 -0
configuration_luxe.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class LuxeConfig(PretrainedConfig):
|
5 |
+
model_type = "luxe"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
vocab_size=50267,
|
10 |
+
entity_vocab_size=500000,
|
11 |
+
num_category_entities=0,
|
12 |
+
hidden_size=768,
|
13 |
+
entity_emb_size=256,
|
14 |
+
num_hidden_layers=12,
|
15 |
+
num_attention_heads=12,
|
16 |
+
intermediate_size=3072,
|
17 |
+
hidden_act="gelu",
|
18 |
+
hidden_dropout_prob=0.1,
|
19 |
+
attention_probs_dropout_prob=0.1,
|
20 |
+
max_position_embeddings=512,
|
21 |
+
type_vocab_size=2,
|
22 |
+
initializer_range=0.02,
|
23 |
+
layer_norm_eps=1e-12,
|
24 |
+
use_entity_aware_attention=True,
|
25 |
+
classifier_dropout=None,
|
26 |
+
normalize_entity_embeddings=False,
|
27 |
+
entity_temperature=1.0,
|
28 |
+
pad_token_id=1,
|
29 |
+
bos_token_id=0,
|
30 |
+
eos_token_id=2,
|
31 |
+
**kwargs,
|
32 |
+
):
|
33 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
34 |
+
|
35 |
+
self.vocab_size = vocab_size
|
36 |
+
self.entity_vocab_size = entity_vocab_size
|
37 |
+
self.num_category_entities = num_category_entities
|
38 |
+
self.hidden_size = hidden_size
|
39 |
+
self.entity_emb_size = entity_emb_size
|
40 |
+
self.num_hidden_layers = num_hidden_layers
|
41 |
+
self.num_attention_heads = num_attention_heads
|
42 |
+
self.hidden_act = hidden_act
|
43 |
+
self.intermediate_size = intermediate_size
|
44 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
45 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
46 |
+
self.max_position_embeddings = max_position_embeddings
|
47 |
+
self.type_vocab_size = type_vocab_size
|
48 |
+
self.initializer_range = initializer_range
|
49 |
+
self.layer_norm_eps = layer_norm_eps
|
50 |
+
self.use_entity_aware_attention = use_entity_aware_attention
|
51 |
+
self.classifier_dropout = classifier_dropout
|
52 |
+
self.normalize_entity_embeddings = normalize_entity_embeddings
|
53 |
+
self.entity_temperature = entity_temperature
|
modeling_luxe.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from transformers.modeling_utils import PreTrainedModel
|
7 |
+
from transformers.models.luke.modeling_luke import (
|
8 |
+
EntityPredictionHead,
|
9 |
+
LukeLMHead,
|
10 |
+
LukeModel,
|
11 |
+
)
|
12 |
+
from transformers.utils import ModelOutput
|
13 |
+
|
14 |
+
from configuration_luxe import LuxeConfig
|
15 |
+
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class LuxeMaskedLMOutput(ModelOutput):
|
19 |
+
loss: Optional[torch.FloatTensor] = None
|
20 |
+
mlm_loss: Optional[torch.FloatTensor] = None
|
21 |
+
mep_loss: Optional[torch.FloatTensor] = None
|
22 |
+
tep_loss: Optional[torch.FloatTensor] = None
|
23 |
+
tcp_loss: Optional[torch.FloatTensor] = None
|
24 |
+
logits: torch.FloatTensor = None
|
25 |
+
entity_logits: Optional[torch.FloatTensor] = None
|
26 |
+
topic_entity_logits: torch.FloatTensor = None
|
27 |
+
topic_category_logits: Optional[torch.FloatTensor] = None
|
28 |
+
last_hidden_state: torch.FloatTensor = None
|
29 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
30 |
+
entity_last_hidden_state: torch.FloatTensor = None
|
31 |
+
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
32 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
33 |
+
|
34 |
+
|
35 |
+
class LuxePreTrainedModel(PreTrainedModel):
|
36 |
+
config_class = LuxeConfig
|
37 |
+
base_model_prefix = "luke"
|
38 |
+
supports_gradient_checkpointing = True
|
39 |
+
_no_split_modules = ["LukeAttention", "LukeEntityEmbeddings"]
|
40 |
+
|
41 |
+
def _init_weights(self, module: nn.Module):
|
42 |
+
if isinstance(module, nn.Linear):
|
43 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
44 |
+
if module.bias is not None:
|
45 |
+
module.bias.data.zero_()
|
46 |
+
elif isinstance(module, nn.Embedding):
|
47 |
+
if module.embedding_dim == 1: # embedding for bias parameters
|
48 |
+
module.weight.data.zero_()
|
49 |
+
else:
|
50 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
51 |
+
if module.padding_idx is not None:
|
52 |
+
module.weight.data[module.padding_idx].zero_()
|
53 |
+
elif isinstance(module, nn.LayerNorm):
|
54 |
+
module.bias.data.zero_()
|
55 |
+
module.weight.data.fill_(1.0)
|
56 |
+
|
57 |
+
|
58 |
+
class LuxeForMaskedLM(LuxePreTrainedModel):
|
59 |
+
_tied_weights_keys = [
|
60 |
+
"lm_head.decoder.weight",
|
61 |
+
"lm_head.decoder.bias",
|
62 |
+
"entity_predictions.decoder.weight",
|
63 |
+
]
|
64 |
+
|
65 |
+
def __init__(self, config: LuxeConfig):
|
66 |
+
super().__init__(config)
|
67 |
+
|
68 |
+
self.luke = LukeModel(config)
|
69 |
+
|
70 |
+
if self.config.normalize_entity_embeddings:
|
71 |
+
self.luke.entity_embeddings.entity_embeddings = nn.Embedding(
|
72 |
+
config.entity_vocab_size,
|
73 |
+
config.entity_emb_size,
|
74 |
+
padding_idx=0,
|
75 |
+
max_norm=1.0,
|
76 |
+
)
|
77 |
+
|
78 |
+
self.lm_head = LukeLMHead(config)
|
79 |
+
self.entity_predictions = EntityPredictionHead(config)
|
80 |
+
|
81 |
+
self.loss_fn = nn.CrossEntropyLoss()
|
82 |
+
|
83 |
+
# Initialize weights and apply final processing
|
84 |
+
self.post_init()
|
85 |
+
|
86 |
+
def tie_weights(self):
|
87 |
+
super().tie_weights()
|
88 |
+
self._tie_or_clone_weights(
|
89 |
+
self.entity_predictions.decoder,
|
90 |
+
self.luke.entity_embeddings.entity_embeddings,
|
91 |
+
)
|
92 |
+
|
93 |
+
def get_output_embeddings(self) -> nn.Module:
|
94 |
+
return self.lm_head.decoder
|
95 |
+
|
96 |
+
def set_output_embeddings(self, new_embeddings: nn.Module):
|
97 |
+
self.lm_head.decoder = new_embeddings
|
98 |
+
|
99 |
+
def forward(
|
100 |
+
self,
|
101 |
+
input_ids: Optional[torch.LongTensor] = None,
|
102 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
103 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
104 |
+
position_ids: Optional[torch.LongTensor] = None,
|
105 |
+
entity_ids: Optional[torch.LongTensor] = None,
|
106 |
+
entity_attention_mask: Optional[torch.LongTensor] = None,
|
107 |
+
entity_token_type_ids: Optional[torch.LongTensor] = None,
|
108 |
+
entity_position_ids: Optional[torch.LongTensor] = None,
|
109 |
+
labels: Optional[torch.LongTensor] = None,
|
110 |
+
entity_labels: Optional[torch.LongTensor] = None,
|
111 |
+
topic_entity_labels: Optional[torch.LongTensor] = None,
|
112 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
113 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
114 |
+
output_attentions: Optional[bool] = None,
|
115 |
+
output_hidden_states: Optional[bool] = None,
|
116 |
+
return_dict: Optional[bool] = None,
|
117 |
+
) -> Union[Tuple, LuxeMaskedLMOutput]:
|
118 |
+
return_dict = (
|
119 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
120 |
+
)
|
121 |
+
|
122 |
+
outputs = self.luke(
|
123 |
+
input_ids=input_ids,
|
124 |
+
attention_mask=attention_mask,
|
125 |
+
token_type_ids=token_type_ids,
|
126 |
+
position_ids=position_ids,
|
127 |
+
entity_ids=entity_ids,
|
128 |
+
entity_attention_mask=entity_attention_mask,
|
129 |
+
entity_token_type_ids=entity_token_type_ids,
|
130 |
+
entity_position_ids=entity_position_ids,
|
131 |
+
head_mask=head_mask,
|
132 |
+
inputs_embeds=inputs_embeds,
|
133 |
+
output_attentions=output_attentions,
|
134 |
+
output_hidden_states=output_hidden_states,
|
135 |
+
return_dict=True,
|
136 |
+
)
|
137 |
+
|
138 |
+
loss = None
|
139 |
+
|
140 |
+
mlm_loss = None
|
141 |
+
logits = self.lm_head(outputs.last_hidden_state)
|
142 |
+
if labels is not None:
|
143 |
+
labels = labels.to(logits.device)
|
144 |
+
mlm_loss = self.loss_fn(
|
145 |
+
logits.view(-1, self.config.vocab_size), labels.view(-1)
|
146 |
+
)
|
147 |
+
if loss is None:
|
148 |
+
loss = mlm_loss
|
149 |
+
|
150 |
+
mep_loss = None
|
151 |
+
entity_logits = None
|
152 |
+
if outputs.entity_last_hidden_state is not None:
|
153 |
+
entity_logits = self.entity_predictions(outputs.entity_last_hidden_state)
|
154 |
+
if entity_labels is not None:
|
155 |
+
mep_loss = self.loss_fn(
|
156 |
+
entity_logits.view(-1, self.config.entity_vocab_size)
|
157 |
+
/ self.config.entity_temperature,
|
158 |
+
entity_labels.view(-1),
|
159 |
+
)
|
160 |
+
if loss is None:
|
161 |
+
loss = mep_loss
|
162 |
+
else:
|
163 |
+
loss = loss + mep_loss
|
164 |
+
|
165 |
+
topic_entity_logits = self.entity_predictions(outputs.last_hidden_state[:, 0])
|
166 |
+
topic_category_logits = None
|
167 |
+
if self.config.num_category_entities > 0:
|
168 |
+
topic_category_logits = topic_entity_logits[
|
169 |
+
:, -self.config.num_category_entities :
|
170 |
+
]
|
171 |
+
topic_entity_logits = topic_entity_logits[
|
172 |
+
:, : -self.config.num_category_entities
|
173 |
+
]
|
174 |
+
|
175 |
+
topic_category_labels = None
|
176 |
+
if topic_entity_labels is not None and self.config.num_category_entities > 0:
|
177 |
+
topic_category_labels = topic_entity_labels[
|
178 |
+
:, -self.config.num_category_entities :
|
179 |
+
]
|
180 |
+
topic_entity_labels = topic_entity_labels[
|
181 |
+
:, : -self.config.num_category_entities
|
182 |
+
]
|
183 |
+
|
184 |
+
tep_loss = None
|
185 |
+
if topic_entity_labels is not None:
|
186 |
+
num_topic_entity_labels = topic_entity_labels.sum(dim=1)
|
187 |
+
if (num_topic_entity_labels > 0).any():
|
188 |
+
topic_entity_labels = topic_entity_labels.to(
|
189 |
+
topic_entity_logits.dtype
|
190 |
+
) / num_topic_entity_labels.unsqueeze(-1)
|
191 |
+
tep_loss = self.loss_fn(
|
192 |
+
topic_entity_logits[num_topic_entity_labels > 0]
|
193 |
+
/ self.config.entity_temperature,
|
194 |
+
topic_entity_labels[num_topic_entity_labels > 0],
|
195 |
+
)
|
196 |
+
if loss is None:
|
197 |
+
loss = tep_loss
|
198 |
+
else:
|
199 |
+
loss = loss + tep_loss
|
200 |
+
|
201 |
+
tcp_loss = None
|
202 |
+
if topic_category_labels is not None:
|
203 |
+
num_topic_category_labels = topic_category_labels.sum(dim=1)
|
204 |
+
if (num_topic_category_labels > 0).any():
|
205 |
+
topic_category_labels = topic_category_labels.to(
|
206 |
+
topic_category_logits.dtype
|
207 |
+
) / num_topic_category_labels.unsqueeze(-1)
|
208 |
+
tcp_loss = self.loss_fn(
|
209 |
+
topic_category_logits[num_topic_category_labels > 0]
|
210 |
+
/ self.config.entity_temperature,
|
211 |
+
topic_category_labels[num_topic_category_labels > 0],
|
212 |
+
)
|
213 |
+
if loss is None:
|
214 |
+
loss = tcp_loss
|
215 |
+
else:
|
216 |
+
loss = loss + tcp_loss
|
217 |
+
|
218 |
+
if not return_dict:
|
219 |
+
return tuple(
|
220 |
+
v
|
221 |
+
for v in [
|
222 |
+
logits,
|
223 |
+
entity_logits,
|
224 |
+
topic_entity_logits,
|
225 |
+
topic_category_logits,
|
226 |
+
outputs.last_hidden_state,
|
227 |
+
outputs.entity_last_hidden_state,
|
228 |
+
outputs.hidden_states,
|
229 |
+
outputs.entity_hidden_states,
|
230 |
+
outputs.attentions,
|
231 |
+
]
|
232 |
+
if v is not None
|
233 |
+
)
|
234 |
+
|
235 |
+
return LuxeMaskedLMOutput(
|
236 |
+
loss=loss,
|
237 |
+
mlm_loss=mlm_loss,
|
238 |
+
mep_loss=mep_loss,
|
239 |
+
tep_loss=tep_loss,
|
240 |
+
tcp_loss=tcp_loss,
|
241 |
+
logits=logits,
|
242 |
+
entity_logits=entity_logits,
|
243 |
+
topic_entity_logits=topic_entity_logits,
|
244 |
+
topic_category_logits=topic_category_logits,
|
245 |
+
last_hidden_state=outputs.last_hidden_state,
|
246 |
+
hidden_states=outputs.hidden_states,
|
247 |
+
entity_last_hidden_state=outputs.entity_last_hidden_state,
|
248 |
+
entity_hidden_states=outputs.entity_hidden_states,
|
249 |
+
attentions=outputs.attentions,
|
250 |
+
)
|