|
from transformers.configuration_utils import PretrainedConfig |
|
|
|
|
|
class UbkeConfig(PretrainedConfig): |
|
model_type = "ubke" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=50267, |
|
entity_vocab_size=500000, |
|
num_category_entities=0, |
|
hidden_size=768, |
|
entity_emb_size=256, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=512, |
|
type_vocab_size=2, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-12, |
|
use_entity_aware_attention=True, |
|
classifier_dropout=None, |
|
normalize_entity_embeddings=False, |
|
entity_temperature=1.0, |
|
pad_token_id=1, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
**kwargs, |
|
): |
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
**kwargs, |
|
) |
|
|
|
self.vocab_size = vocab_size |
|
self.entity_vocab_size = entity_vocab_size |
|
self.num_category_entities = num_category_entities |
|
self.hidden_size = hidden_size |
|
self.entity_emb_size = entity_emb_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_act = hidden_act |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.type_vocab_size = type_vocab_size |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.use_entity_aware_attention = use_entity_aware_attention |
|
self.classifier_dropout = classifier_dropout |
|
self.normalize_entity_embeddings = normalize_entity_embeddings |
|
self.entity_temperature = entity_temperature |
|
|