File size: 3,943 Bytes
9d78ebe 2337f1b 9d78ebe 2337f1b 9d78ebe 2337f1b e4258a0 2337f1b e4258a0 2337f1b 57e1e46 2337f1b 145e999 0b80597 605dc04 0b80597 2337f1b 0b80597 2337f1b 0b80597 2337f1b 5fd32b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
language:
- en
library_name: peft
pipeline_tag: text-generation
tags:
- Mistral
license: llama2
model-index:
- name: SpeechlessCoder
results:
- task:
type: text-generation
dataset:
type: openai_humaneval
name: HumanEval
metrics:
- name: pass@1
type: pass@1
value: 0.0
verified: false
---
# Mistral-7b-OpenOrca-lora
**This is a test.**
This LoRA model is extracted from the efficient parameter fine-tuned model ([Mistral-7B-OpenOra](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca)), and now it needs to be verified whether this LoRA model can achieve comparable performance with the original model.
The final goal is to create a toolkit that can simultaneously load multiple LoRA modules, and automatically switch to the appropriate combination of LoRA modules based on user queries to generate the best answer.
The lora merged model is [here](https://huggingface.co/uukuguy/Mistral-7B-OpenOrca-lora-merged)
The source code is [here](https://github.com/uukuguy/multi_loras)
## Mistral-7B-OpenOrca
- Extract lora model [Mistral-7B-OpenOrca-lora](https://huggingface.co/uukuguy/Mistral-7B-OpenOrca-lora) from [Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca);
- Merge the base model [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) with lora model to [Mistral-7B-OpenOrca-lora-merged](https://huggingface.co/uukuguy/Mistral-7B-OpenOrca-lora-merged)
- LLM Evaluation ...
### Local Test
| | ARC_acc_norm (25-shot) | HellaSwag_acc_norm (10-shot) | MMLU_acc (5-shot) | TruthfulQA_mc2 (0-shot) | GSM8K_acc (8-shot) | Open LLM Score |
| ------ | ------ | ------ | ------ | ------ | ------ | ------ |
| Mistral-7B-OpenOrca | **71** | 83 | 61.42 | 45 | 40 | 65.11 |
| **r=256** | 68 | **84** | **64.28** | 46.953 | **41** | **65.81** |
| r=64 | 67 | 84 | 64.26 | **47.32** | **41** | 65.65 |
| *r=16* | *65* | *83* | *62.84* | *46.95* | *38* | *64.45* |
### Open LLM Leaderboard
| | ARC_acc_norm (25-shot) | HellaSwag_acc_norm (10-shot) | MMLU_acc (5-shot) | TruthfulQA_mc2 (0-shot) | Open LLM Score |
| ------ | ------ | ------ | ------ | ------ | ------ |
| Mistral-7B-SlimOrca | 62.54 | 83.86 | **62.77** | **54.23** | **65.85** |
| Mistral-7B-OpenOrca | **64.08** | **83.99** | 62.24 | 53.05 | 65.84 |
## lm-evaluation-harness
[Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
| Metric | Mistral-7B-OpenOrca | Mistral-7B-OpenOrca-lora| Mistral-7B-OpenOrca-lora-merged |
| --- | --- |--- | --- |
| ARC | 64.08 | | |
| HellaSwag | 83.99 | | |
| MMLU | 62.24 | | |
| TruthfulQA | 53.05 | | |
| Average | 65.84 | | |
## HumanEval
| Metric | Mistral-7B-OpenOrca | Mistral-7B-OpenOrca-lora|Mistral-7B-OpenOrca-lora-merged |
| --- | --- | --- | --- |
| humaneval-python | 35.976 | | |
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_uukuguy__Mistral-7B-OpenOrca-lora)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 50.72 |
| ARC (25-shot) | 61.95 |
| HellaSwag (10-shot) | 83.62 |
| MMLU (5-shot) | 64.16 |
| TruthfulQA (0-shot) | 42.74 |
| Winogrande (5-shot) | 79.08 |
| GSM8K (5-shot) | 17.29 |
| DROP (3-shot) | 6.19 |
|