File size: 1,674 Bytes
3c22ae9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
model-index:
- name: layoutlmv3-custom_no_text
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-custom_no_text
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.3487
- eval_noise: {'precision': 0.6914893617021277, 'recall': 0.7210776545166403, 'f1': 0.7059736229635376, 'number': 631}
- eval_signal: {'precision': 0.684931506849315, 'recall': 0.7142857142857143, 'f1': 0.6993006993006993, 'number': 630}
- eval_overall_precision: 0.6882
- eval_overall_recall: 0.7177
- eval_overall_f1: 0.7026
- eval_overall_accuracy: 0.9325
- eval_runtime: 0.9604
- eval_samples_per_second: 37.484
- eval_steps_per_second: 5.206
- epoch: 24.0
- step: 432
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
|