Model save
Browse files- README.md +177 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: rinna/japanese-hubert-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: Hubert-noisy_common_voice_debug
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Hubert-noisy_common_voice_debug
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [rinna/japanese-hubert-base](https://huggingface.co/rinna/japanese-hubert-base) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.9670
|
22 |
+
- Wer: 1.0
|
23 |
+
- Cer: 0.3173
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 0.0003
|
43 |
+
- train_batch_size: 16
|
44 |
+
- eval_batch_size: 8
|
45 |
+
- seed: 42
|
46 |
+
- gradient_accumulation_steps: 2
|
47 |
+
- total_train_batch_size: 32
|
48 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
49 |
+
- lr_scheduler_type: cosine
|
50 |
+
- lr_scheduler_warmup_steps: 12500
|
51 |
+
- num_epochs: 30.0
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
57 |
+
|:-------------:|:-------:|:-----:|:---------------:|:------:|:------:|
|
58 |
+
| No log | 0.2660 | 100 | 12.0822 | 1.1570 | 1.0539 |
|
59 |
+
| No log | 0.5319 | 200 | 5.8789 | 1.0 | 0.9817 |
|
60 |
+
| No log | 0.7979 | 300 | 5.3627 | 1.0 | 0.9817 |
|
61 |
+
| No log | 1.0638 | 400 | 4.9316 | 1.0 | 0.9817 |
|
62 |
+
| 6.372 | 1.3298 | 500 | 4.4556 | 1.0 | 0.9817 |
|
63 |
+
| 6.372 | 1.5957 | 600 | 3.9890 | 1.0 | 0.9817 |
|
64 |
+
| 6.372 | 1.8617 | 700 | 3.5734 | 1.0 | 0.9817 |
|
65 |
+
| 6.372 | 2.1277 | 800 | 3.2932 | 1.0 | 0.9817 |
|
66 |
+
| 6.372 | 2.3936 | 900 | 3.1536 | 1.0 | 0.9817 |
|
67 |
+
| 3.4101 | 2.6596 | 1000 | 3.0484 | 1.0 | 0.9817 |
|
68 |
+
| 3.4101 | 2.9255 | 1100 | 2.8470 | 1.0 | 0.9808 |
|
69 |
+
| 3.4101 | 3.1915 | 1200 | 2.5211 | 1.0 | 0.8702 |
|
70 |
+
| 3.4101 | 3.4574 | 1300 | 2.0354 | 1.0 | 0.5518 |
|
71 |
+
| 3.4101 | 3.7234 | 1400 | 1.6780 | 1.0 | 0.4414 |
|
72 |
+
| 2.3222 | 3.9894 | 1500 | 1.5039 | 1.0 | 0.4312 |
|
73 |
+
| 2.3222 | 4.2553 | 1600 | 1.3419 | 1.0 | 0.3965 |
|
74 |
+
| 2.3222 | 4.5213 | 1700 | 1.2054 | 1.0 | 0.3686 |
|
75 |
+
| 2.3222 | 4.7872 | 1800 | 1.0588 | 1.0 | 0.3321 |
|
76 |
+
| 2.3222 | 5.0532 | 1900 | 0.9546 | 1.0 | 0.3158 |
|
77 |
+
| 1.2343 | 5.3191 | 2000 | 0.9042 | 1.0 | 0.3106 |
|
78 |
+
| 1.2343 | 5.5851 | 2100 | 0.8747 | 1.0 | 0.3088 |
|
79 |
+
| 1.2343 | 5.8511 | 2200 | 0.8224 | 1.0 | 0.2972 |
|
80 |
+
| 1.2343 | 6.1170 | 2300 | 0.8101 | 1.0 | 0.2996 |
|
81 |
+
| 1.2343 | 6.3830 | 2400 | 0.7892 | 1.0 | 0.2970 |
|
82 |
+
| 0.8716 | 6.6489 | 2500 | 0.7661 | 1.0 | 0.2915 |
|
83 |
+
| 0.8716 | 6.9149 | 2600 | 0.7654 | 1.0 | 0.2886 |
|
84 |
+
| 0.8716 | 7.1809 | 2700 | 0.7677 | 1.0 | 0.2898 |
|
85 |
+
| 0.8716 | 7.4468 | 2800 | 0.7528 | 1.0 | 0.2861 |
|
86 |
+
| 0.8716 | 7.7128 | 2900 | 0.7433 | 1.0 | 0.2880 |
|
87 |
+
| 0.7324 | 7.9787 | 3000 | 0.7498 | 1.0 | 0.2877 |
|
88 |
+
| 0.7324 | 8.2447 | 3100 | 0.7267 | 1.0 | 0.2827 |
|
89 |
+
| 0.7324 | 8.5106 | 3200 | 0.7319 | 1.0 | 0.2813 |
|
90 |
+
| 0.7324 | 8.7766 | 3300 | 0.7478 | 1.0 | 0.2882 |
|
91 |
+
| 0.7324 | 9.0426 | 3400 | 0.7337 | 1.0 | 0.2815 |
|
92 |
+
| 0.6486 | 9.3085 | 3500 | 0.7341 | 1.0 | 0.2851 |
|
93 |
+
| 0.6486 | 9.5745 | 3600 | 0.7419 | 1.0 | 0.2803 |
|
94 |
+
| 0.6486 | 9.8404 | 3700 | 0.7033 | 0.9998 | 0.2773 |
|
95 |
+
| 0.6486 | 10.1064 | 3800 | 0.7327 | 1.0 | 0.2829 |
|
96 |
+
| 0.6486 | 10.3723 | 3900 | 0.7554 | 0.9998 | 0.2855 |
|
97 |
+
| 0.6034 | 10.6383 | 4000 | 0.7361 | 1.0 | 0.2841 |
|
98 |
+
| 0.6034 | 10.9043 | 4100 | 0.7459 | 1.0 | 0.2833 |
|
99 |
+
| 0.6034 | 11.1702 | 4200 | 0.7384 | 1.0 | 0.2801 |
|
100 |
+
| 0.6034 | 11.4362 | 4300 | 0.7337 | 1.0 | 0.2776 |
|
101 |
+
| 0.6034 | 11.7021 | 4400 | 0.7572 | 1.0 | 0.2819 |
|
102 |
+
| 0.5687 | 11.9681 | 4500 | 0.7522 | 1.0 | 0.2824 |
|
103 |
+
| 0.5687 | 12.2340 | 4600 | 0.7491 | 1.0 | 0.2789 |
|
104 |
+
| 0.5687 | 12.5 | 4700 | 0.7485 | 1.0 | 0.2832 |
|
105 |
+
| 0.5687 | 12.7660 | 4800 | 0.7623 | 1.0 | 0.2849 |
|
106 |
+
| 0.5687 | 13.0319 | 4900 | 0.7829 | 1.0 | 0.2859 |
|
107 |
+
| 0.5255 | 13.2979 | 5000 | 0.7819 | 1.0 | 0.2820 |
|
108 |
+
| 0.5255 | 13.5638 | 5100 | 0.7783 | 0.9998 | 0.2824 |
|
109 |
+
| 0.5255 | 13.8298 | 5200 | 0.7653 | 1.0 | 0.2840 |
|
110 |
+
| 0.5255 | 14.0957 | 5300 | 0.7816 | 1.0 | 0.2822 |
|
111 |
+
| 0.5255 | 14.3617 | 5400 | 0.7608 | 1.0 | 0.2824 |
|
112 |
+
| 0.5016 | 14.6277 | 5500 | 0.7712 | 0.9998 | 0.2841 |
|
113 |
+
| 0.5016 | 14.8936 | 5600 | 0.7712 | 1.0 | 0.2864 |
|
114 |
+
| 0.5016 | 15.1596 | 5700 | 0.8153 | 0.9996 | 0.2851 |
|
115 |
+
| 0.5016 | 15.4255 | 5800 | 0.8161 | 0.9998 | 0.2852 |
|
116 |
+
| 0.5016 | 15.6915 | 5900 | 0.7911 | 1.0 | 0.2883 |
|
117 |
+
| 0.4821 | 15.9574 | 6000 | 0.7926 | 1.0 | 0.2823 |
|
118 |
+
| 0.4821 | 16.2234 | 6100 | 0.8147 | 1.0 | 0.2867 |
|
119 |
+
| 0.4821 | 16.4894 | 6200 | 0.7700 | 1.0 | 0.2826 |
|
120 |
+
| 0.4821 | 16.7553 | 6300 | 0.8119 | 1.0 | 0.2910 |
|
121 |
+
| 0.4821 | 17.0213 | 6400 | 0.8355 | 1.0 | 0.2846 |
|
122 |
+
| 0.4503 | 17.2872 | 6500 | 0.7936 | 0.9998 | 0.2859 |
|
123 |
+
| 0.4503 | 17.5532 | 6600 | 0.7976 | 0.9998 | 0.2952 |
|
124 |
+
| 0.4503 | 17.8191 | 6700 | 0.8274 | 0.9998 | 0.2902 |
|
125 |
+
| 0.4503 | 18.0851 | 6800 | 0.9034 | 0.9998 | 0.2885 |
|
126 |
+
| 0.4503 | 18.3511 | 6900 | 0.8066 | 0.9998 | 0.2882 |
|
127 |
+
| 0.4435 | 18.6170 | 7000 | 0.8495 | 1.0 | 0.2921 |
|
128 |
+
| 0.4435 | 18.8830 | 7100 | 0.8448 | 0.9998 | 0.2896 |
|
129 |
+
| 0.4435 | 19.1489 | 7200 | 0.8774 | 1.0 | 0.2904 |
|
130 |
+
| 0.4435 | 19.4149 | 7300 | 0.8293 | 0.9998 | 0.2973 |
|
131 |
+
| 0.4435 | 19.6809 | 7400 | 0.8038 | 1.0 | 0.2925 |
|
132 |
+
| 0.4457 | 19.9468 | 7500 | 0.8062 | 0.9998 | 0.2908 |
|
133 |
+
| 0.4457 | 20.2128 | 7600 | 0.8740 | 1.0 | 0.2918 |
|
134 |
+
| 0.4457 | 20.4787 | 7700 | 0.8489 | 1.0 | 0.2977 |
|
135 |
+
| 0.4457 | 20.7447 | 7800 | 0.8606 | 1.0 | 0.2973 |
|
136 |
+
| 0.4457 | 21.0106 | 7900 | 0.8141 | 0.9998 | 0.2926 |
|
137 |
+
| 0.4252 | 21.2766 | 8000 | 0.8832 | 0.9998 | 0.2984 |
|
138 |
+
| 0.4252 | 21.5426 | 8100 | 0.8590 | 0.9998 | 0.2945 |
|
139 |
+
| 0.4252 | 21.8085 | 8200 | 0.8304 | 0.9998 | 0.2940 |
|
140 |
+
| 0.4252 | 22.0745 | 8300 | 0.8734 | 0.9998 | 0.2974 |
|
141 |
+
| 0.4252 | 22.3404 | 8400 | 0.8417 | 0.9998 | 0.2930 |
|
142 |
+
| 0.418 | 22.6064 | 8500 | 0.9387 | 1.0 | 0.2993 |
|
143 |
+
| 0.418 | 22.8723 | 8600 | 0.8810 | 1.0 | 0.2996 |
|
144 |
+
| 0.418 | 23.1383 | 8700 | 0.9090 | 1.0 | 0.3074 |
|
145 |
+
| 0.418 | 23.4043 | 8800 | 0.8993 | 0.9998 | 0.3107 |
|
146 |
+
| 0.418 | 23.6702 | 8900 | 0.8724 | 1.0 | 0.3033 |
|
147 |
+
| 0.424 | 23.9362 | 9000 | 0.8895 | 0.9998 | 0.3042 |
|
148 |
+
| 0.424 | 24.2021 | 9100 | 0.8863 | 1.0 | 0.3014 |
|
149 |
+
| 0.424 | 24.4681 | 9200 | 0.9255 | 0.9998 | 0.3112 |
|
150 |
+
| 0.424 | 24.7340 | 9300 | 0.9398 | 0.9998 | 0.3011 |
|
151 |
+
| 0.424 | 25.0 | 9400 | 0.8763 | 0.9998 | 0.3071 |
|
152 |
+
| 0.4122 | 25.2660 | 9500 | 0.9353 | 1.0 | 0.3090 |
|
153 |
+
| 0.4122 | 25.5319 | 9600 | 0.9382 | 1.0 | 0.3128 |
|
154 |
+
| 0.4122 | 25.7979 | 9700 | 0.9295 | 0.9998 | 0.3102 |
|
155 |
+
| 0.4122 | 26.0638 | 9800 | 0.9286 | 0.9998 | 0.3092 |
|
156 |
+
| 0.4122 | 26.3298 | 9900 | 0.9141 | 1.0 | 0.3014 |
|
157 |
+
| 0.4146 | 26.5957 | 10000 | 0.9426 | 1.0 | 0.3126 |
|
158 |
+
| 0.4146 | 26.8617 | 10100 | 0.8652 | 1.0 | 0.3032 |
|
159 |
+
| 0.4146 | 27.1277 | 10200 | 0.9289 | 1.0 | 0.3105 |
|
160 |
+
| 0.4146 | 27.3936 | 10300 | 0.9459 | 1.0 | 0.3103 |
|
161 |
+
| 0.4146 | 27.6596 | 10400 | 0.9137 | 0.9998 | 0.3124 |
|
162 |
+
| 0.416 | 27.9255 | 10500 | 0.9305 | 1.0 | 0.3100 |
|
163 |
+
| 0.416 | 28.1915 | 10600 | 0.9589 | 1.0 | 0.3071 |
|
164 |
+
| 0.416 | 28.4574 | 10700 | 0.9276 | 0.9998 | 0.3061 |
|
165 |
+
| 0.416 | 28.7234 | 10800 | 0.9259 | 1.0 | 0.3078 |
|
166 |
+
| 0.416 | 28.9894 | 10900 | 0.9287 | 1.0 | 0.3150 |
|
167 |
+
| 0.4078 | 29.2553 | 11000 | 0.9346 | 0.9998 | 0.3166 |
|
168 |
+
| 0.4078 | 29.5213 | 11100 | 0.9559 | 1.0 | 0.3165 |
|
169 |
+
| 0.4078 | 29.7872 | 11200 | 0.9670 | 1.0 | 0.3173 |
|
170 |
+
|
171 |
+
|
172 |
+
### Framework versions
|
173 |
+
|
174 |
+
- Transformers 4.47.0.dev0
|
175 |
+
- Pytorch 2.5.1+cu124
|
176 |
+
- Datasets 3.1.0
|
177 |
+
- Tokenizers 0.20.3
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 377647624
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b202dfb06c29c84670c079890f402ad58628ae47de7879942dd16cf0348731f5
|
3 |
size 377647624
|