File size: 4,596 Bytes
9ec9194
 
920c0c8
 
9ec9194
 
 
920c0c8
 
9ec9194
 
 
 
 
 
 
 
 
 
 
 
 
920c0c8
9ec9194
920c0c8
9ec9194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
library_name: transformers
language:
- ja
license: apache-2.0
base_model: rinna/japanese-hubert-base
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_13_0
- generated_from_trainer
metrics:
- wer
model-index:
- name: Hubert-common_voice-phoneme-debug-warmup500
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Hubert-common_voice-phoneme-debug-warmup500

This model is a fine-tuned version of [rinna/japanese-hubert-base](https://huggingface.co/rinna/japanese-hubert-base) on the MOZILLA-FOUNDATION/COMMON_VOICE_13_0 - JA dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9679
- Wer: 1.0
- Cer: 0.9851

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 30.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer | Cer    |
|:-------------:|:-------:|:----:|:---------------:|:---:|:------:|
| No log        | 0.7092  | 100  | 4.5669          | 1.0 | 0.9851 |
| No log        | 1.4184  | 200  | 3.0119          | 1.0 | 0.9851 |
| No log        | 2.1277  | 300  | 2.9840          | 1.0 | 0.9851 |
| No log        | 2.8369  | 400  | 2.9764          | 1.0 | 0.9851 |
| 3.973         | 3.5461  | 500  | 2.9796          | 1.0 | 0.9851 |
| 3.973         | 4.2553  | 600  | 2.9758          | 1.0 | 0.9851 |
| 3.973         | 4.9645  | 700  | 2.9691          | 1.0 | 0.9851 |
| 3.973         | 5.6738  | 800  | 2.9858          | 1.0 | 0.9850 |
| 3.973         | 6.3830  | 900  | 2.9692          | 1.0 | 0.9851 |
| 2.9654        | 7.0922  | 1000 | 2.9895          | 1.0 | 0.9850 |
| 2.9654        | 7.8014  | 1100 | 2.9725          | 1.0 | 0.9850 |
| 2.9654        | 8.5106  | 1200 | 2.9713          | 1.0 | 0.9850 |
| 2.9654        | 9.2199  | 1300 | 2.9758          | 1.0 | 0.9851 |
| 2.9654        | 9.9291  | 1400 | 2.9784          | 1.0 | 0.9850 |
| 2.9643        | 10.6383 | 1500 | 2.9687          | 1.0 | 0.9851 |
| 2.9643        | 11.3475 | 1600 | 2.9779          | 1.0 | 0.9851 |
| 2.9643        | 12.0567 | 1700 | 2.9679          | 1.0 | 0.9850 |
| 2.9643        | 12.7660 | 1800 | 2.9769          | 1.0 | 0.9851 |
| 2.9643        | 13.4752 | 1900 | 2.9718          | 1.0 | 0.9851 |
| 2.9631        | 14.1844 | 2000 | 2.9686          | 1.0 | 0.9851 |
| 2.9631        | 14.8936 | 2100 | 2.9706          | 1.0 | 0.9850 |
| 2.9631        | 15.6028 | 2200 | 2.9791          | 1.0 | 0.9851 |
| 2.9631        | 16.3121 | 2300 | 2.9731          | 1.0 | 0.9851 |
| 2.9631        | 17.0213 | 2400 | 2.9722          | 1.0 | 0.9850 |
| 2.9627        | 17.7305 | 2500 | 2.9723          | 1.0 | 0.9851 |
| 2.9627        | 18.4397 | 2600 | 2.9689          | 1.0 | 0.9851 |
| 2.9627        | 19.1489 | 2700 | 2.9747          | 1.0 | 0.9851 |
| 2.9627        | 19.8582 | 2800 | 2.9801          | 1.0 | 0.9851 |
| 2.9627        | 20.5674 | 2900 | 2.9740          | 1.0 | 0.9851 |
| 2.9622        | 21.2766 | 3000 | 2.9736          | 1.0 | 0.9850 |
| 2.9622        | 21.9858 | 3100 | 2.9719          | 1.0 | 0.9851 |
| 2.9622        | 22.6950 | 3200 | 2.9710          | 1.0 | 0.9850 |
| 2.9622        | 23.4043 | 3300 | 2.9714          | 1.0 | 0.9850 |
| 2.9622        | 24.1135 | 3400 | 2.9701          | 1.0 | 0.9851 |
| 2.9609        | 24.8227 | 3500 | 2.9695          | 1.0 | 0.9851 |
| 2.9609        | 25.5319 | 3600 | 2.9669          | 1.0 | 0.9850 |
| 2.9609        | 26.2411 | 3700 | 2.9774          | 1.0 | 0.9851 |
| 2.9609        | 26.9504 | 3800 | 2.9712          | 1.0 | 0.9851 |
| 2.9609        | 27.6596 | 3900 | 2.9701          | 1.0 | 0.9851 |
| 2.962         | 28.3688 | 4000 | 2.9689          | 1.0 | 0.9851 |
| 2.962         | 29.0780 | 4100 | 2.9738          | 1.0 | 0.9850 |
| 2.962         | 29.7872 | 4200 | 2.9678          | 1.0 | 0.9851 |


### Framework versions

- Transformers 4.47.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3