usamaaleem99tech commited on
Commit
8c47f4d
·
1 Parent(s): dfe1d3c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -12
README.md CHANGED
@@ -44,11 +44,12 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.1453
48
  - Accuracy: 0.9655
49
  - F1: 0.9647
50
  - Precision: 0.9674
51
  - Recall: 0.9655
 
52
 
53
  ## Model description
54
 
@@ -80,17 +81,17 @@ The following hyperparameters were used during training:
80
 
81
  ### Training results
82
 
83
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
84
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
85
- | No log | 0.89 | 6 | 0.0454 | 1.0 | 1.0 | 1.0 | 1.0 |
86
- | 0.1558 | 1.93 | 13 | 0.0816 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
87
- | 0.1727 | 2.96 | 20 | 0.0775 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
88
- | 0.1727 | 4.0 | 27 | 0.0443 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
89
- | 0.1299 | 4.89 | 33 | 0.0535 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
90
- | 0.1808 | 5.93 | 40 | 0.0298 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
91
- | 0.1808 | 6.96 | 47 | 0.0195 | 1.0 | 1.0 | 1.0 | 1.0 |
92
- | 0.1406 | 8.0 | 54 | 0.0526 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
93
- | 0.1193 | 8.89 | 60 | 0.1453 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
94
 
95
 
96
  ### Framework versions
 
44
 
45
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.1855
48
  - Accuracy: 0.9655
49
  - F1: 0.9647
50
  - Precision: 0.9674
51
  - Recall: 0.9655
52
+ - Learning Rate: 0.0000
53
 
54
  ## Model description
55
 
 
81
 
82
  ### Training results
83
 
84
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Rate |
85
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:|
86
+ | No log | 0.89 | 6 | 0.1113 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 |
87
+ | 0.1153 | 1.93 | 13 | 0.0929 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 |
88
+ | 0.2246 | 2.96 | 20 | 0.1026 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 |
89
+ | 0.2246 | 4.0 | 27 | 0.0391 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 |
90
+ | 0.1433 | 4.89 | 33 | 0.0673 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 |
91
+ | 0.1816 | 5.93 | 40 | 0.0794 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 |
92
+ | 0.1816 | 6.96 | 47 | 0.0687 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 |
93
+ | 0.1448 | 8.0 | 54 | 0.1123 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 |
94
+ | 0.1124 | 8.89 | 60 | 0.1855 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 |
95
 
96
 
97
  ### Framework versions