Update README.md
Browse files
README.md
CHANGED
@@ -51,10 +51,37 @@ pipeline_tag: text-generation
|
|
51 |
{Assistant}
|
52 |
```
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
## Hardware and Software
|
55 |
|
56 |
-
* **Hardware**: We utilized an A100x8 for training our model
|
57 |
-
* **Training Factors**: We fine-tuned this model using a combination of the [DeepSpeed library](https://github.com/microsoft/DeepSpeed) and the [HuggingFace
|
58 |
|
59 |
## Evaluation Results
|
60 |
|
@@ -75,15 +102,13 @@ We used the [lm-evaluation-harness repository](https://github.com/EleutherAI/lm-
|
|
75 |
| llama-65b | 64.2 | 63.5 | 86.1 | 63.9 | 43.4 | | |
|
76 |
| falcon-40b-instruct | 63.4 | 61.6 | 84.3 | 55.4 | 52.5 | | |
|
77 |
|
78 |
-
### Scripts
|
79 |
- Prepare evaluation environments:
|
80 |
```
|
81 |
# clone the repository
|
82 |
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
|
83 |
-
|
84 |
# check out the specific commit
|
85 |
git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463
|
86 |
-
|
87 |
# change to the repository directory
|
88 |
cd lm-evaluation-harness
|
89 |
```
|
|
|
51 |
{Assistant}
|
52 |
```
|
53 |
|
54 |
+
## Usage
|
55 |
+
|
56 |
+
- Tested on A100 80GB
|
57 |
+
- Our model can handle up to 10k input tokens, thanks to the `rope_scaling` option
|
58 |
+
|
59 |
+
```python
|
60 |
+
import torch
|
61 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
62 |
+
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained("upstage/llama-30b-instruct")
|
64 |
+
model = AutoModelForCausalLM.from_pretrained(
|
65 |
+
"upstage/llama-30b-instruct",
|
66 |
+
device_map="auto",
|
67 |
+
torch_dtype=torch.float16,
|
68 |
+
load_in_8bit=True,
|
69 |
+
rope_scaling={"type": "dynamic", "factor": 2} # allows handling of longer inputs
|
70 |
+
)
|
71 |
+
|
72 |
+
prompt = "### User:\nThomas is healthy, but he has to go to the hospital. What could be the reasons?\n\n### Assistant:\n"
|
73 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
74 |
+
del inputs["token_type_ids"]
|
75 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
76 |
+
|
77 |
+
output = model.generate(**inputs, streamer=streamer, use_cache=True, max_new_tokens=float('inf'))
|
78 |
+
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
79 |
+
```
|
80 |
+
|
81 |
## Hardware and Software
|
82 |
|
83 |
+
* **Hardware**: We utilized an A100x8 * 4 for training our model
|
84 |
+
* **Training Factors**: We fine-tuned this model using a combination of the [DeepSpeed library](https://github.com/microsoft/DeepSpeed) and the [HuggingFace Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) / [HuggingFace Accelerate](https://huggingface.co/docs/accelerate/index)
|
85 |
|
86 |
## Evaluation Results
|
87 |
|
|
|
102 |
| llama-65b | 64.2 | 63.5 | 86.1 | 63.9 | 43.4 | | |
|
103 |
| falcon-40b-instruct | 63.4 | 61.6 | 84.3 | 55.4 | 52.5 | | |
|
104 |
|
105 |
+
### Scripts for H4 Score Reproduction
|
106 |
- Prepare evaluation environments:
|
107 |
```
|
108 |
# clone the repository
|
109 |
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
|
|
|
110 |
# check out the specific commit
|
111 |
git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463
|
|
|
112 |
# change to the repository directory
|
113 |
cd lm-evaluation-harness
|
114 |
```
|