ashvardanian
commited on
Commit
•
ffae8d1
1
Parent(s):
ef52b55
Upload folder using huggingface_hub
Browse files- README.md +125 -11
- config.json +10 -2
- image_encoder.mlpackage/Data/com.apple.CoreML/model.mlmodel +2 -2
- image_encoder.mlpackage/Data/com.apple.CoreML/weights/weight.bin +1 -1
- image_encoder.mlpackage/Manifest.json +8 -8
- image_encoder.onnx +2 -2
- image_encoder.pt +2 -2
- text_encoder.mlpackage/Data/com.apple.CoreML/weights/weight.bin +1 -1
- text_encoder.mlpackage/Manifest.json +8 -8
- text_encoder.onnx +1 -1
- text_encoder.pt +2 -2
README.md
CHANGED
@@ -1,16 +1,130 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
-
language:
|
4 |
-
- en
|
5 |
-
library_name: UForm
|
6 |
pipeline_tag: feature-extraction
|
7 |
tags:
|
8 |
-
|
9 |
-
|
10 |
-
- transformers.js
|
11 |
-
- transformers
|
12 |
datasets:
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
3 |
pipeline_tag: feature-extraction
|
4 |
tags:
|
5 |
+
- clip
|
6 |
+
- vision
|
|
|
|
|
7 |
datasets:
|
8 |
+
- Ziyang/yfcc15m
|
9 |
+
- conceptual_captions
|
10 |
+
---
|
11 |
+
<h1 align="center">UForm</h1>
|
12 |
+
<h3 align="center">
|
13 |
+
Multi-Modal Inference Library<br/>
|
14 |
+
For Semantic Search Applications<br/>
|
15 |
+
</h3>
|
16 |
+
|
17 |
+
---
|
18 |
+
|
19 |
+
UForm is a Multi-Modal Modal Inference package, designed to encode Multi-Lingual Texts, Images, and, soon, Audio, Video, and Documents, into a shared vector space!
|
20 |
+
|
21 |
+
This is model card of the __English only model__ with:
|
22 |
+
|
23 |
+
* 4 layers BERT (2 layers for unimodal encoding and rest layers for multimodal encoding)
|
24 |
+
* ViT-S/16 (image resolution is 224x224)
|
25 |
+
|
26 |
+
|
27 |
+
If you need Multilingual model, check [this](https://huggingface.co/unum-cloud/uform-vl-multilingual).
|
28 |
+
|
29 |
+
## Evaluation
|
30 |
+
|
31 |
+
The following metrics were obtained with multimodal re-ranking (text-to-image retrieval):
|
32 |
+
|
33 |
+
| Dataset |Recall@1 | Recall@5 | Recall@10 |
|
34 |
+
| :------ | ------: | --------: | --------: |
|
35 |
+
| Zero-Shot Flickr | 0.565 | 0.790 | 0.860 |
|
36 |
+
| Zero-Shot MS-COCO | 0.281 | 0.525 | 0.645 |
|
37 |
+
|
38 |
+
ImageNet-Top1: 0.361 \
|
39 |
+
ImageNet-Top5: 0.608
|
40 |
+
|
41 |
+
## Installation
|
42 |
+
|
43 |
+
```bash
|
44 |
+
pip install uform[torch]
|
45 |
+
```
|
46 |
+
|
47 |
+
## Usage
|
48 |
+
|
49 |
+
To load the model:
|
50 |
+
|
51 |
+
```python
|
52 |
+
import uform
|
53 |
+
|
54 |
+
model, processor = uform.get_model('unum-cloud/uform-vl-english-small')
|
55 |
+
```
|
56 |
+
|
57 |
+
To encode data:
|
58 |
+
|
59 |
+
```python
|
60 |
+
from PIL import Image
|
61 |
+
|
62 |
+
text = 'a small red panda in a zoo'
|
63 |
+
image = Image.open('red_panda.jpg')
|
64 |
+
|
65 |
+
image_data = processor.preprocess_image(image)
|
66 |
+
text_data = processor.preprocess_text(text)
|
67 |
+
|
68 |
+
image_features, image_embedding = model.encode_image(image_data, return_features=True)
|
69 |
+
text_features, text_embedding = model.encode_text(text_data, return_features=True)
|
70 |
+
joint_embedding = model.encode_multimodal(image=image_data, text=text_data)
|
71 |
+
```
|
72 |
+
|
73 |
+
To get features:
|
74 |
+
|
75 |
+
```python
|
76 |
+
image_features, image_embedding = model.encode_image(image_data, return_features=True)
|
77 |
+
text_features, text_embedding = model.encode_text(text_data, return_features=True)
|
78 |
+
```
|
79 |
+
|
80 |
+
These features can later be used to produce joint multimodal encodings faster, as the first layers of the transformer can be skipped:
|
81 |
+
|
82 |
+
```python
|
83 |
+
joint_embedding = model.encode_multimodal(
|
84 |
+
image_features=image_features,
|
85 |
+
text_features=text_features,
|
86 |
+
attention_mask=text_data['attention_mask']
|
87 |
+
)
|
88 |
+
```
|
89 |
+
|
90 |
+
There are two options to calculate semantic compatibility between an image and a text: [Cosine Similarity](#cosine-similarity) and [Matching Score](#matching-score).
|
91 |
+
|
92 |
+
### Cosine Similarity
|
93 |
+
|
94 |
+
```python
|
95 |
+
import torch.nn.functional as F
|
96 |
+
|
97 |
+
similarity = F.cosine_similarity(image_embedding, text_embedding)
|
98 |
+
```
|
99 |
+
|
100 |
+
The `similarity` will belong to the `[-1, 1]` range, `1` meaning the absolute match.
|
101 |
+
|
102 |
+
__Pros__:
|
103 |
+
|
104 |
+
- Computationally cheap.
|
105 |
+
- Only unimodal embeddings are required, unimodal encoding is faster than joint encoding.
|
106 |
+
- Suitable for retrieval in large collections.
|
107 |
+
|
108 |
+
__Cons__:
|
109 |
+
|
110 |
+
- Takes into account only coarse-grained features.
|
111 |
+
|
112 |
+
|
113 |
+
### Matching Score
|
114 |
+
|
115 |
+
Unlike cosine similarity, unimodal embedding are not enough.
|
116 |
+
Joint embedding will be needed and the resulting `score` will belong to the `[0, 1]` range, `1` meaning the absolute match.
|
117 |
+
|
118 |
+
```python
|
119 |
+
score = model.get_matching_scores(joint_embedding)
|
120 |
+
```
|
121 |
+
|
122 |
+
__Pros__:
|
123 |
+
|
124 |
+
- Joint embedding captures fine-grained features.
|
125 |
+
- Suitable for re-ranking – sorting retrieval result.
|
126 |
+
|
127 |
+
__Cons__:
|
128 |
+
|
129 |
+
- Resource-intensive.
|
130 |
+
- Not suitable for retrieval in large collections.
|
config.json
CHANGED
@@ -19,14 +19,22 @@
|
|
19 |
"dropout_prob": 0.1
|
20 |
},
|
21 |
"image_encoder": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
"dim": 384,
|
23 |
"patch_size": 16,
|
24 |
"image_size": 224,
|
25 |
"num_layers": 12,
|
26 |
"num_heads": 6,
|
27 |
"embedding_dim": 256,
|
28 |
-
"normalization_means": [0.48145466, 0.4578275, 0.40821073],
|
29 |
-
"normalization_deviations": [0.26862954, 0.26130258, 0.27577711],
|
30 |
"pooling": "cls"
|
31 |
}
|
32 |
}
|
|
|
19 |
"dropout_prob": 0.1
|
20 |
},
|
21 |
"image_encoder": {
|
22 |
+
"normalization_means": [
|
23 |
+
0.48145466,
|
24 |
+
0.4578275,
|
25 |
+
0.40821073
|
26 |
+
],
|
27 |
+
"normalization_deviations": [
|
28 |
+
0.26862954,
|
29 |
+
0.26130258,
|
30 |
+
0.27577711
|
31 |
+
],
|
32 |
"dim": 384,
|
33 |
"patch_size": 16,
|
34 |
"image_size": 224,
|
35 |
"num_layers": 12,
|
36 |
"num_heads": 6,
|
37 |
"embedding_dim": 256,
|
|
|
|
|
38 |
"pooling": "cls"
|
39 |
}
|
40 |
}
|
image_encoder.mlpackage/Data/com.apple.CoreML/model.mlmodel
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f18da9209de45eca55e0e0f23f3f3f7c4ad1a03d96533a7c5108df0a125c1663
|
3 |
+
size 111190
|
image_encoder.mlpackage/Data/com.apple.CoreML/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87106624
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:750f259efc991efc9f32aae3cb8960508e8ae68122b7fa83f26b6ba97b78d1cc
|
3 |
size 87106624
|
image_encoder.mlpackage/Manifest.json
CHANGED
@@ -1,18 +1,18 @@
|
|
1 |
{
|
2 |
"fileFormatVersion": "1.0.0",
|
3 |
"itemInfoEntries": {
|
4 |
-
"
|
5 |
-
"author": "com.apple.CoreML",
|
6 |
-
"description": "CoreML Model Specification",
|
7 |
-
"name": "model.mlmodel",
|
8 |
-
"path": "com.apple.CoreML/model.mlmodel"
|
9 |
-
},
|
10 |
-
"CD25C0E2-C2BB-4C45-8EF7-2D23E3E550A6": {
|
11 |
"author": "com.apple.CoreML",
|
12 |
"description": "CoreML Model Weights",
|
13 |
"name": "weights",
|
14 |
"path": "com.apple.CoreML/weights"
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
}
|
16 |
},
|
17 |
-
"rootModelIdentifier": "
|
18 |
}
|
|
|
1 |
{
|
2 |
"fileFormatVersion": "1.0.0",
|
3 |
"itemInfoEntries": {
|
4 |
+
"703D1BA1-CC3F-468B-B079-5914AE99ECF4": {
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"author": "com.apple.CoreML",
|
6 |
"description": "CoreML Model Weights",
|
7 |
"name": "weights",
|
8 |
"path": "com.apple.CoreML/weights"
|
9 |
+
},
|
10 |
+
"C8AB2870-74DF-4EDF-9F73-4903BE34700E": {
|
11 |
+
"author": "com.apple.CoreML",
|
12 |
+
"description": "CoreML Model Specification",
|
13 |
+
"name": "model.mlmodel",
|
14 |
+
"path": "com.apple.CoreML/model.mlmodel"
|
15 |
}
|
16 |
},
|
17 |
+
"rootModelIdentifier": "C8AB2870-74DF-4EDF-9F73-4903BE34700E"
|
18 |
}
|
image_encoder.onnx
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0d6bc2354318ad9d5a53cad2aa219e307bcdcf3010aa9a8cdb3f385c574015a
|
3 |
+
size 22589738
|
image_encoder.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad037e636f42ca84f3e2c2a3c1180649f46507ff5c771f6d7def14481f84dbb6
|
3 |
+
size 43620486
|
text_encoder.mlpackage/Data/com.apple.CoreML/weights/weight.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 151459264
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:091bd543cf3c3ec3eddd4b0d50fca6309b47e15163c69c8e4a380c708ed9a320
|
3 |
size 151459264
|
text_encoder.mlpackage/Manifest.json
CHANGED
@@ -1,18 +1,18 @@
|
|
1 |
{
|
2 |
"fileFormatVersion": "1.0.0",
|
3 |
"itemInfoEntries": {
|
4 |
-
"
|
5 |
-
"author": "com.apple.CoreML",
|
6 |
-
"description": "CoreML Model Weights",
|
7 |
-
"name": "weights",
|
8 |
-
"path": "com.apple.CoreML/weights"
|
9 |
-
},
|
10 |
-
"BE4077DB-78CC-4549-B7F9-0F6AA0AEFF56": {
|
11 |
"author": "com.apple.CoreML",
|
12 |
"description": "CoreML Model Specification",
|
13 |
"name": "model.mlmodel",
|
14 |
"path": "com.apple.CoreML/model.mlmodel"
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
}
|
16 |
},
|
17 |
-
"rootModelIdentifier": "
|
18 |
}
|
|
|
1 |
{
|
2 |
"fileFormatVersion": "1.0.0",
|
3 |
"itemInfoEntries": {
|
4 |
+
"702D723F-AA56-4B0B-A29C-6F7D643170BA": {
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"author": "com.apple.CoreML",
|
6 |
"description": "CoreML Model Specification",
|
7 |
"name": "model.mlmodel",
|
8 |
"path": "com.apple.CoreML/model.mlmodel"
|
9 |
+
},
|
10 |
+
"D5AF71DD-F123-410D-9CED-F0017B203BF1": {
|
11 |
+
"author": "com.apple.CoreML",
|
12 |
+
"description": "CoreML Model Weights",
|
13 |
+
"name": "weights",
|
14 |
+
"path": "com.apple.CoreML/weights"
|
15 |
}
|
16 |
},
|
17 |
+
"rootModelIdentifier": "702D723F-AA56-4B0B-A29C-6F7D643170BA"
|
18 |
}
|
text_encoder.onnx
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 37994692
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0b8c0dca234622eb2ee57acf22c893394a79126b7dc4be2ed7cb7dcb1095aca
|
3 |
size 37994692
|
text_encoder.pt
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8636c1447e28b39b9d1d51902497acd65007aad26b3cf84912fd917046bccb7
|
3 |
+
size 114159394
|