ashvardanian
commited on
Commit
•
34ed1bc
1
Parent(s):
c0b99ad
Update README.md
Browse files
README.md
CHANGED
@@ -10,38 +10,38 @@ datasets:
|
|
10 |
---
|
11 |
<h1 align="center">UForm</h1>
|
12 |
<h3 align="center">
|
13 |
-
Multi-Modal
|
14 |
-
For
|
|
|
15 |
</h3>
|
16 |
|
17 |
---
|
18 |
|
19 |
-
|
|
|
20 |
|
21 |
-
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
If you need Multilingual model, check [this](https://huggingface.co/unum-cloud/uform-vl-multilingual).
|
28 |
|
29 |
## Evaluation
|
30 |
|
31 |
-
|
|
|
32 |
|
33 |
| Dataset |Recall@1 | Recall@5 | Recall@10 |
|
34 |
| :------ | ------: | --------: | --------: |
|
35 |
| Zero-Shot Flickr | 0.565 | 0.790 | 0.860 |
|
36 |
| Zero-Shot MS-COCO | 0.281 | 0.525 | 0.645 |
|
37 |
|
38 |
-
ImageNet-Top1: 0.361 \
|
39 |
-
ImageNet-Top5: 0.608
|
40 |
-
|
41 |
## Installation
|
42 |
|
43 |
```bash
|
44 |
-
pip install uform[torch]
|
45 |
```
|
46 |
|
47 |
## Usage
|
@@ -49,82 +49,33 @@ pip install uform[torch]
|
|
49 |
To load the model:
|
50 |
|
51 |
```python
|
52 |
-
import
|
53 |
-
|
54 |
-
model, processor = uform.get_model('unum-cloud/uform-vl-english-small')
|
55 |
-
```
|
56 |
-
|
57 |
-
To encode data:
|
58 |
|
59 |
-
|
|
|
60 |
from PIL import Image
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
image_data = processor.preprocess_image(image)
|
66 |
-
text_data = processor.preprocess_text(text)
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
71 |
```
|
72 |
|
73 |
-
To
|
74 |
|
75 |
```python
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
```
|
79 |
|
80 |
-
These features can later be used to produce joint multimodal encodings faster, as the first layers of the transformer can be skipped:
|
81 |
-
|
82 |
-
```python
|
83 |
-
joint_embedding = model.encode_multimodal(
|
84 |
-
image_features=image_features,
|
85 |
-
text_features=text_features,
|
86 |
-
attention_mask=text_data['attention_mask']
|
87 |
-
)
|
88 |
-
```
|
89 |
-
|
90 |
-
There are two options to calculate semantic compatibility between an image and a text: [Cosine Similarity](#cosine-similarity) and [Matching Score](#matching-score).
|
91 |
-
|
92 |
-
### Cosine Similarity
|
93 |
-
|
94 |
-
```python
|
95 |
-
import torch.nn.functional as F
|
96 |
-
|
97 |
-
similarity = F.cosine_similarity(image_embedding, text_embedding)
|
98 |
-
```
|
99 |
-
|
100 |
-
The `similarity` will belong to the `[-1, 1]` range, `1` meaning the absolute match.
|
101 |
-
|
102 |
-
__Pros__:
|
103 |
-
|
104 |
-
- Computationally cheap.
|
105 |
-
- Only unimodal embeddings are required, unimodal encoding is faster than joint encoding.
|
106 |
-
- Suitable for retrieval in large collections.
|
107 |
-
|
108 |
-
__Cons__:
|
109 |
-
|
110 |
-
- Takes into account only coarse-grained features.
|
111 |
-
|
112 |
-
|
113 |
-
### Matching Score
|
114 |
-
|
115 |
-
Unlike cosine similarity, unimodal embedding are not enough.
|
116 |
-
Joint embedding will be needed and the resulting `score` will belong to the `[0, 1]` range, `1` meaning the absolute match.
|
117 |
-
|
118 |
-
```python
|
119 |
-
score = model.get_matching_scores(joint_embedding)
|
120 |
-
```
|
121 |
-
|
122 |
-
__Pros__:
|
123 |
-
|
124 |
-
- Joint embedding captures fine-grained features.
|
125 |
-
- Suitable for re-ranking – sorting retrieval result.
|
126 |
-
|
127 |
-
__Cons__:
|
128 |
|
129 |
-
- Resource-intensive.
|
130 |
-
- Not suitable for retrieval in large collections.
|
|
|
10 |
---
|
11 |
<h1 align="center">UForm</h1>
|
12 |
<h3 align="center">
|
13 |
+
Multi-Modal Pocket-Sized AI<br/>
|
14 |
+
For Content Understaning and Generation<br/>
|
15 |
+
In Python, JavaScript, and Swift<br/>
|
16 |
</h3>
|
17 |
|
18 |
---
|
19 |
|
20 |
+
The `uform3-image-text-english-small` UForm model is a tiny vision and English language encoder, mapping them into a shared vector space.
|
21 |
+
This model is made of:
|
22 |
|
23 |
+
* Text encoder: 4-layer BERT.
|
24 |
+
* Visual encoder: ViT-S/16 for images of 224x224 resolution.
|
25 |
|
26 |
+
Unlike most CLIP-like multomodal models, this model shares 2 layers between the text and visual encoder to allow for more data- and parameter-efficient training.
|
27 |
+
Also unlike most models, UForm provides checkpoints compatible with PyTorch, ONNX, and CoreML, covering the absolute majority of AI-capable devices, with pre-quantized weights and inference code.
|
28 |
+
If you need a larger, more accurate, or multilingual model, check our [HuggingFace Hub](https://huggingface.co/unum-cloud/).
|
29 |
+
For more details on running the model, check out the [UForm GitHub repository](https://github.com/unum-cloud/uform/).
|
|
|
30 |
|
31 |
## Evaluation
|
32 |
|
33 |
+
For zero-shot ImageNet classification the model achieves Top-1 accuracy of 36.1% and Top-5 of 60.8%.
|
34 |
+
On text-to-image retrieval it reaches 86% Recall@10 for Flickr:
|
35 |
|
36 |
| Dataset |Recall@1 | Recall@5 | Recall@10 |
|
37 |
| :------ | ------: | --------: | --------: |
|
38 |
| Zero-Shot Flickr | 0.565 | 0.790 | 0.860 |
|
39 |
| Zero-Shot MS-COCO | 0.281 | 0.525 | 0.645 |
|
40 |
|
|
|
|
|
|
|
41 |
## Installation
|
42 |
|
43 |
```bash
|
44 |
+
pip install "uform[torch,onnx]"
|
45 |
```
|
46 |
|
47 |
## Usage
|
|
|
49 |
To load the model:
|
50 |
|
51 |
```python
|
52 |
+
from uform import get_model, Modality
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
import requests
|
55 |
+
from io import BytesIO
|
56 |
from PIL import Image
|
57 |
|
58 |
+
model_name = 'unum-cloud/uform3-image-text-english-small'
|
59 |
+
modalities = [Modality.TEXT_ENCODER, Modality.IMAGE_ENCODER]
|
60 |
+
processors, models = get_model(model_name, modalities=modalities)
|
|
|
|
|
61 |
|
62 |
+
model_text = models[Modality.TEXT_ENCODER]
|
63 |
+
model_image = models[Modality.IMAGE_ENCODER]
|
64 |
+
processor_text = processors[Modality.TEXT_ENCODER]
|
65 |
+
processor_image = processors[Modality.IMAGE_ENCODER]
|
66 |
```
|
67 |
|
68 |
+
To encode the content:
|
69 |
|
70 |
```python
|
71 |
+
text = 'a cityscape bathed in the warm glow of the sun, with varied architecture and a towering, snow-capped mountain rising majestically in the background'
|
72 |
+
image_url = 'https://media-cdn.tripadvisor.com/media/photo-s/1b/28/6b/53/lovely-armenia.jpg'
|
73 |
+
image_url = Image.open(BytesIO(requests.get(image_url).content))
|
74 |
+
|
75 |
+
image_data = processor_image(image)
|
76 |
+
text_data = processor_text(text)
|
77 |
+
image_features, image_embedding = model_image.encode(image_data, return_features=True)
|
78 |
+
text_features, text_embedding = model_text.encode(text_data, return_features=True)
|
79 |
```
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
|
|
|