kimihailv commited on
Commit
07ca6b0
1 Parent(s): 9887a97

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ ---
6
+ <h1 align="center">UForm</h1>
7
+ <h3 align="center">
8
+ Pocket-Sized Multimodal AI<br/>
9
+ For Content Understanding and Generation<br/>
10
+ </h3>
11
+
12
+ ## Description
13
+
14
+ UForm-Gen is a small generative vision-language model primarily designed for Image Captioning and Visual Question Answering. The model consists of two parts:
15
+
16
+ 1. [UForm Vision Encoder](https://huggingface.co/unum-cloud/uform-vl-english)
17
+ 2. [Sheared-LLaMA-1.3B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B) manually tuned on the instruction dataset
18
+
19
+ The model was pre-trained on: MSCOCO, SBU Captions, Visual Genome, VQAv2, GQA and a few internal datasets. UForm-Gen-Chat is SFT version of [`UForm-Gen`](https://huggingface.co/unum-cloud/uform-gen) for multimodal chat.
20
+
21
+ ### Usage
22
+
23
+ ```bash
24
+ pip install uform
25
+ ```
26
+
27
+ ```python
28
+ from uform.gen_model import VLMForCausalLM, VLMProcessor
29
+
30
+ model = VLMForCausalLM.from_pretrained("unum-cloud/uform-gen-chat")
31
+ processor = VLMProcessor.from_pretrained("unum-cloud/uform-gen-chat")
32
+
33
+ messages = [
34
+ {"role": "system", "content": "You are a helpful assistant."},
35
+ {"role": "user", "content": "<image> {Your message}"}
36
+ ]
37
+
38
+ image = processor.image_processor(Image.open("zebra.jpg")).unsqueeze(0)
39
+
40
+ input_ids = processor.tokenizer.apply_chat_template(
41
+ messages, return_tensors="pt", add_generation_prompt=True
42
+ )
43
+
44
+ attention_mask = torch.ones(1, input_ids.shape[1] + processor.num_image_latents - 1)
45
+
46
+ inputs = {
47
+ "input_ids": input_ids,
48
+ "attention_mask": attention_mask,
49
+ "images": image,
50
+ }
51
+
52
+ outputs = model.generate(
53
+ **inputs,
54
+ do_sample=False,
55
+ use_cache=True,
56
+ max_new_tokens=1024,
57
+ eos_token_id=32001,
58
+ pad_token_id=processor.tokenizer.pad_token_id,
59
+ )
60
+
61
+ message = processor.batch_decode(outputs[:, inputs["input_ids"].shape[1]:-1])
62
+
63
+ ```
64
+
65
+
66
+ ## Evaluation
67
+
68
+ For captioning evaluation we measure CLIPScore and RefCLIPScore¹.
69
+
70
+ | Model | Size | Caption Length | CLIPScore | RefCLIPScore |
71
+ | :---------------------------------- | ---: | -------------: | --------: | -----------: |
72
+ | `llava-hf/llava-1.5-7b-hf` | 7B | Long | 0.878 | 0.529 |
73
+ | `llava-hf/llava-1.5-7b-hf` | 7B | Short | 0.886 | 0.531 |
74
+ | |
75
+ | `Salesforce/instructblip-vicuna-7b` | 7B | Long | 0.902 | 0.534 |
76
+ | `Salesforce/instructblip-vicuna-7b` | 7B | Short | 0.848 | 0.523 |
77
+ | |
78
+ | |
79
+ | `unum-cloud/uform-gen-chat` | 1.5B | Long | 0.860 | 0.525 |
80
+ | `unum-cloud/uform-gen-chat` | 1.5B | Short | 0.858 | 0.525 |
81
+
82
+ ¹ We used `apple/DFN5B-CLIP-ViT-H-14-378` CLIP model.