ONNX
uform-coreml-onnx / convert_model.py
kimihailv's picture
Upload convert_model.py
8ad0892
raw
history blame
5.12 kB
import uform
import torch
import coremltools as ct
from os.path import join
from argparse import ArgumentParser
class TextEncoder(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model.eval()
def forward(self, input_ids, attention_mask):
features = self.model.forward_features(
input_ids, attention_mask
)
embeddings = self.model.forward_embedding(
features, attention_mask
)
return features, embeddings
class ImageEncoder(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model.eval()
def forward(self, image):
features = self.model.forward_features(
image
)
embeddings = self.model.forward_embedding(
features
)
return features, embeddings
def convert_model(opts):
src_model = uform.get_model(opts.model_name)
input_ids = torch.ones(1, src_model.text_encoder.max_position_embeddings, dtype=torch.int32)
attention_mask = torch.ones(1, src_model.text_encoder.max_position_embeddings, dtype=torch.int32)
image = torch.ones(1, 3, src_model.image_encoder.image_size, src_model.image_encoder.image_size, dtype=torch.float32)
print('Tracing models…')
image_encoder = ImageEncoder(src_model.image_encoder).eval()
image_encoder = torch.jit.trace(image_encoder, image)
text_encoder = TextEncoder(src_model.text_encoder).eval()
text_encoder = torch.jit.trace(text_encoder, (input_ids, attention_mask))
print('Converting models…')
if opts.image_batchsize_lb == opts.image_batchsize_ub:
image_batch_dim_shape = opts.image_batchsize_lb
else:
image_batch_dim_shape = ct.RangeDim(lower_bound=opts.image_batchsize_lb, upper_bound=opts.image_batchsize_ub, default=1)
image_encoder = ct.convert(
image_encoder,
convert_to='mlprogram',
inputs=[
ct.TensorType(
name='image',
shape=(image_batch_dim_shape,) + image.shape[1:],
dtype=image.numpy().dtype
)],
outputs=[
ct.TensorType(
name='features'
),
ct.TensorType(
name='embeddings'
)
],
compute_precision=ct.precision.FLOAT16 if opts.use_fp16 else ct.precision.FLOAT32
)
if opts.text_batchsize_lb == opts.text_batchsize_ub:
text_batch_dim_shape = opts.text_batchsize_lb
else:
text_batch_dim_shape = ct.RangeDim(lower_bound=opts.text_batchsize_lb, upper_bound=opts.text_batchsize_ub, default=1)
text_encoder = ct.convert(
text_encoder,
convert_to='mlprogram',
inputs=[
ct.TensorType(
name='input_ids',
shape=(text_batch_dim_shape,) + input_ids.shape[1:],
dtype=input_ids.numpy().dtype
),
ct.TensorType(
name='attention_mask',
shape=(text_batch_dim_shape,) + attention_mask.shape[1:],
dtype=attention_mask.numpy().dtype
)],
outputs=[
ct.TensorType(
name="features"
),
ct.TensorType(
name="embeddings"
)
],
compute_precision=ct.precision.FLOAT16 if opts.use_fp16 else ct.precision.FLOAT32
)
print('Image encoder:', image_encoder, sep='\n')
print('Text encoder:', text_encoder, sep='\n')
image_encoder.save(join(opts.output_dir, f"{opts.model_name.replace('/', '.')}.image-encoder.mlpackage"))
text_encoder.save(join(opts.output_dir, f"{opts.model_name.replace('/', '.')}.text-encoder.mlpackage"))
if __name__ == '__main__':
opts = ArgumentParser()
opts.add_argument('--model_name',
action='store',
type=str,
help='UForm model name')
opts.add_argument('--text_batchsize_lb',
action='store',
type=int,
help='lower bound of batch size for text encoder')
opts.add_argument('--text_batchsize_ub',
action='store',
type=int,
help='upper bound of batch size for text encoder')
opts.add_argument('--image_batchsize_lb',
action='store',
type=int,
help='lower bound of batch size for image encoder')
opts.add_argument('--image_batchsize_ub',
action='store',
type=int,
help='upper bound of batch size for image encoder')
opts.add_argument('-use_fp16',
action='store_true',
help='whether to use fp16 for inference or not')
opts.add_argument('--output_dir',
action='store',
type=str,
help='ouput directory')
convert_model(opts.parse_args())