v2v-v3 / server.py
unrented5443's picture
Upload folder using huggingface_hub
8d2295d verified
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import librosa
import torch
import base64
import io
import logging
import numpy as np
from transformers import AutoModel, AutoTokenizer
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI()
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class AudioRequest(BaseModel):
audio_data: str
sample_rate: int
class AudioResponse(BaseModel):
audio_data: str
text: str = ""
# Model initialization status
INITIALIZATION_STATUS = {
"model_loaded": False,
"error": None
}
# Global model and tokenizer instances
class Model:
def __init__(self):
self.model = model = AutoModel.from_pretrained(
'./models/checkpoint',
trust_remote_code=True,
torch_dtype=torch.bfloat16,
attn_implementation='sdpa'
)
model = model.eval().cuda()
self.tokenizer = AutoTokenizer.from_pretrained(
'./models/checkpoint',
trust_remote_code=True
)
# Initialize TTS
model.init_tts()
model.tts.float() # Convert TTS to float32 if needed
self.model_in_sr = 16000
self.model_out_sr = 24000
self.ref_audio, _ = librosa.load('./ref_audios/female_example.wav', sr=self.model_in_sr, mono=True) # load the reference audio
self.sys_prompt = model.get_sys_prompt(ref_audio=self.ref_audio, mode='audio_assistant', language='en')
# warmup
audio_data = librosa.load('./ref_audios/male_example.wav', sr=self.model_in_sr, mono=True)[0]
_ = self.inference(audio_data, self.model_in_sr)
def inference(self, audio_np, input_audio_sr):
if input_audio_sr != self.model_in_sr:
audio_np = librosa.resample(audio_np, orig_sr=input_audio_sr, target_sr=self.model_in_sr)
user_question = {'role': 'user', 'content': [audio_np]}
# round one
msgs = [self.sys_prompt, user_question]
res = self.model.chat(
msgs=msgs,
tokenizer=self.tokenizer,
sampling=True,
max_new_tokens=128,
use_tts_template=True,
generate_audio=True,
temperature=0.3,
)
audio = res["audio_wav"].cpu().numpy()
if self.model_out_sr != input_audio_sr:
audio = librosa.resample(audio, orig_sr=self.model_out_sr, target_sr=input_audio_sr)
return audio, res["text"]
def initialize_model():
"""Initialize the MiniCPM model"""
global model, INITIALIZATION_STATUS
try:
logger.info("Initializing model...")
model = Model()
INITIALIZATION_STATUS["model_loaded"] = True
logger.info("MiniCPM model initialized successfully")
return True
except Exception as e:
INITIALIZATION_STATUS["error"] = str(e)
logger.error(f"Failed to initialize model: {e}")
return False
@app.on_event("startup")
async def startup_event():
"""Initialize model on startup"""
initialize_model()
@app.get("/api/v1/health")
def health_check():
"""Health check endpoint"""
status = {
"status": "healthy" if INITIALIZATION_STATUS["model_loaded"] else "initializing",
"model_loaded": INITIALIZATION_STATUS["model_loaded"],
"error": INITIALIZATION_STATUS["error"]
}
return status
@app.post("/api/v1/inference")
async def inference(request: AudioRequest) -> AudioResponse:
"""Run inference with MiniCPM model"""
if not INITIALIZATION_STATUS["model_loaded"]:
raise HTTPException(
status_code=503,
detail=f"Model not ready. Status: {INITIALIZATION_STATUS}"
)
try:
# Decode audio data from base64
audio_bytes = base64.b64decode(request.audio_data)
audio_np = np.load(io.BytesIO(audio_bytes)).flatten()
# Generate response
import time
start = time.time()
print(f"starting inference with audio length {audio_np.shape}")
audio_response, text_response = model.inference(audio_np, request.sample_rate)
print(f"inference took {time.time() - start} seconds")
# If we got audio, save it and encode to base64
buffer = io.BytesIO()
np.save(buffer, audio_response)
audio_b64 = base64.b64encode(buffer.getvalue()).decode()
return AudioResponse(
audio_data=audio_b64,
text=text_response
)
except Exception as e:
logger.error(f"Inference failed: {str(e)}")
raise HTTPException(
status_code=500,
detail=str(e)
)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)