|
using System.Collections; |
|
using System.Collections.Generic; |
|
using UnityEngine; |
|
using Unity.Sentis; |
|
using System.IO; |
|
using System.Text; |
|
using FF = Unity.Sentis.Functional; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
public class RunPhi15: MonoBehaviour |
|
{ |
|
|
|
|
|
const BackendType backend = BackendType.GPUCompute; |
|
|
|
|
|
string outputString = "One day an alien came down from Mars. It saw a chicken"; |
|
|
|
|
|
const int maxTokens = 100; |
|
|
|
|
|
const float predictability = 5f; |
|
|
|
|
|
const int END_OF_TEXT = 50256; |
|
|
|
|
|
string[] tokens; |
|
|
|
Worker engine; |
|
|
|
int currentToken = 0; |
|
int[] outputTokens = new int[maxTokens]; |
|
|
|
|
|
int[] whiteSpaceCharacters = new int[256]; |
|
int[] encodedCharacters = new int[256]; |
|
|
|
bool runInference = false; |
|
|
|
|
|
|
|
const int stopAfter = 100; |
|
|
|
int totalTokens = 0; |
|
|
|
string[] merges; |
|
Dictionary<string, int> vocab; |
|
|
|
void Start() |
|
{ |
|
SetupWhiteSpaceShifts(); |
|
|
|
LoadVocabulary(); |
|
|
|
var model1 = ModelLoader.Load(Path.Join(Application.streamingAssetsPath , "phi15.sentis")); |
|
|
|
int outputIndex = model1.outputs.Count - 1; |
|
|
|
|
|
FunctionalGraph graph = new FunctionalGraph(); |
|
FunctionalTensor input_0 = graph.AddInput<int>(new TensorShape(1, maxTokens)); |
|
FunctionalTensor input_1 = graph.AddInput<int>(new TensorShape(1)); |
|
FunctionalTensor row = Functional.Select(Functional.Forward(model1, input_0)[outputIndex], 1, input_1); |
|
FunctionalTensor output = Functional.Multinomial(predictability * row, 1); |
|
Model model2 = graph.Compile(output); |
|
|
|
engine = new Worker(model2, backend); |
|
|
|
DecodePrompt(outputString); |
|
|
|
runInference = true; |
|
} |
|
|
|
|
|
void Update() |
|
{ |
|
if (runInference) |
|
{ |
|
RunInference(); |
|
} |
|
} |
|
|
|
void RunInference() |
|
{ |
|
using var tokensSoFar = new Tensor<int>(new TensorShape(1, maxTokens), outputTokens); |
|
using var index = new Tensor<int>(new TensorShape(1)); |
|
index[0] = currentToken; |
|
engine.SetInput("input_0", tokensSoFar); |
|
engine.SetInput("input_1", index); |
|
engine.Schedule(); |
|
|
|
var probs = engine.PeekOutput() as Tensor<int>; |
|
|
|
|
|
probs.CompleteAllPendingOperations(); |
|
var result = probs.ReadbackAndClone(); |
|
int ID = result[0]; |
|
|
|
|
|
if (currentToken >= maxTokens - 1) |
|
{ |
|
for (int i = 0; i < maxTokens - 1; i++) outputTokens[i] = outputTokens[i + 1]; |
|
currentToken--; |
|
} |
|
|
|
outputTokens[++currentToken] = ID; |
|
totalTokens++; |
|
|
|
if (ID == END_OF_TEXT || totalTokens >= stopAfter) |
|
{ |
|
runInference = false; |
|
} |
|
else if (ID < 0 || ID >= tokens.Length) |
|
{ |
|
|
|
outputString += " "; |
|
} |
|
else outputString += GetUnicodeText(tokens[ID]); |
|
|
|
Debug.Log(outputString); |
|
|
|
} |
|
|
|
void DecodePrompt(string text) |
|
{ |
|
var inputTokens = GetTokens(text); |
|
|
|
for(int i = 0; i < inputTokens.Count; i++) |
|
{ |
|
outputTokens[i] = inputTokens[i]; |
|
} |
|
currentToken = inputTokens.Count - 1; |
|
} |
|
|
|
void LoadVocabulary() |
|
{ |
|
var jsonText = File.ReadAllText(Path.Join(Application.streamingAssetsPath , "vocab.json")); |
|
vocab = Newtonsoft.Json.JsonConvert.DeserializeObject<Dictionary<string, int>>(jsonText); |
|
tokens = new string[vocab.Count]; |
|
foreach (var item in vocab) |
|
{ |
|
tokens[item.Value] = item.Key; |
|
} |
|
|
|
merges = File.ReadAllLines(Path.Join(Application.streamingAssetsPath , "merges.txt")); |
|
} |
|
|
|
|
|
string GetUnicodeText(string text) |
|
{ |
|
var bytes = Encoding.GetEncoding("ISO-8859-1").GetBytes(ShiftCharacterDown(text)); |
|
return Encoding.UTF8.GetString(bytes); |
|
} |
|
string GetASCIIText(string newText) |
|
{ |
|
var bytes = Encoding.UTF8.GetBytes(newText); |
|
return ShiftCharacterUp(Encoding.GetEncoding("ISO-8859-1").GetString(bytes)); |
|
} |
|
|
|
string ShiftCharacterDown(string text) |
|
{ |
|
string outText = ""; |
|
foreach (char letter in text) |
|
{ |
|
outText += ((int)letter <= 256) ? letter : |
|
(char)whiteSpaceCharacters[(int)(letter - 256)]; |
|
} |
|
return outText; |
|
} |
|
|
|
string ShiftCharacterUp(string text) |
|
{ |
|
string outText = ""; |
|
foreach (char letter in text) |
|
{ |
|
outText += (char)encodedCharacters[(int)letter]; |
|
} |
|
return outText; |
|
} |
|
|
|
void SetupWhiteSpaceShifts() |
|
{ |
|
for (int i = 0, n = 0; i < 256; i++) |
|
{ |
|
encodedCharacters[i] = i; |
|
if (IsWhiteSpace(i)) |
|
{ |
|
encodedCharacters[i] = n + 256; |
|
whiteSpaceCharacters[n++] = i; |
|
} |
|
} |
|
} |
|
|
|
bool IsWhiteSpace(int i) |
|
{ |
|
|
|
return i <= 32 || (i >= 127 && i <= 160) || i == 173; |
|
} |
|
|
|
List<int> GetTokens(string text) |
|
{ |
|
text = GetASCIIText(text); |
|
|
|
|
|
var inputTokens = new List<string>(); |
|
foreach(var letter in text) |
|
{ |
|
inputTokens.Add(letter.ToString()); |
|
} |
|
|
|
ApplyMerges(inputTokens); |
|
|
|
|
|
var ids = new List<int>(); |
|
foreach(var token in inputTokens) |
|
{ |
|
if (vocab.TryGetValue(token, out int id)) |
|
{ |
|
ids.Add(id); |
|
} |
|
} |
|
|
|
return ids; |
|
} |
|
|
|
void ApplyMerges(List<string> inputTokens) |
|
{ |
|
foreach(var merge in merges) |
|
{ |
|
string[] pair = merge.Split(' '); |
|
int n = 0; |
|
while (n >= 0) |
|
{ |
|
n = inputTokens.IndexOf(pair[0], n); |
|
if (n != -1 && n < inputTokens.Count - 1 && inputTokens[n + 1] == pair[1]) |
|
{ |
|
inputTokens[n] += inputTokens[n + 1]; |
|
inputTokens.RemoveAt(n + 1); |
|
} |
|
if (n != -1) n++; |
|
} |
|
} |
|
} |
|
|
|
private void OnDestroy() |
|
{ |
|
engine?.Dispose(); |
|
} |
|
|
|
} |