File size: 9,761 Bytes
9be3f67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72c0bcf
9be3f67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c420fe
9be3f67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using Unity.Sentis;
using System.IO;
using Lays = Unity.Sentis.Layers;

/*
 *      Neural Cellular Automata Inference Code
 *      =======================================
 *      
 * Put this script on the Main Camera
 * Create an image or quad in the scene.
 * Assign an unlit transparent material to the image/quad.
 * Draw the same material into the outputMaterial field
 * Add the *.sentis files to the Assets/StreamingAssets folder
 * 
 */
public class RunAutomata : MonoBehaviour
{
    //Change this to load a different model:
    public AutomataNames automataName = AutomataNames.Poop;

    //Reduce this to make it run slower
    [Range(0f, 1f)]
    public float stepSize = 1.0f;

    const BackendType backend = BackendType.GPUCompute;

    //Drag your unlit transparent material here for drawing the output
    public Material outputMaterial;

    //optional material for average alpha 
    public Material avgAlphaMaterial;

    public enum AutomataNames { Lizard, Turtle ,Poop};
   
    //Model parameters
    const int trainedResolution = 40;
    const int trainedPool = 16;
    const int alphaBlocks = 4;
    int m_paddedImageSize;
    int m_trainedHiddenStates;

    //Workers to run the networks
    private IWorker m_WorkerStateUpdate;
    private IWorker m_WorkerClip;

    private TensorFloat m_currentStateTensor;
    private RenderTexture m_currentStateTexture;
    private RenderTexture m_currentBlockAlphaStateTexture;

    Ops m_ops;
    ITensorAllocator m_allocator;

    void Start()
    {
        m_allocator = new TensorCachingAllocator();
        m_ops = WorkerFactory.CreateOps(backend, m_allocator);

        Application.targetFrameRate = 60;

        LoadAutomataModel();

        CreateProcessingModel();

        SetupState();

        SetupTextures();

        DrawDotAt(m_paddedImageSize / 2, m_paddedImageSize / 2);
    }
    void LoadAutomataModel() {

        Model m_ModelStateUpdate = null;

        switch (automataName) {
            case AutomataNames.Lizard:
                m_ModelStateUpdate = ModelLoader.Load(Application.streamingAssetsPath + "/lizard.sentis");
                break;
            case AutomataNames.Turtle:
                m_ModelStateUpdate = ModelLoader.Load(Application.streamingAssetsPath + "/turtle.sentis");
                break;
            case AutomataNames.Poop:
                m_ModelStateUpdate = ModelLoader.Load(Application.streamingAssetsPath + "/poop.sentis");
                break;
        }
        m_trainedHiddenStates = m_ModelStateUpdate.inputs[0].shape[3].value;

        m_paddedImageSize = trainedResolution + trainedPool * 2;

        m_WorkerStateUpdate = WorkerFactory.CreateWorker(backend, m_ModelStateUpdate, false);

    }
    void CreateProcessingModel() { 

        var m_Model = new Model();

        var input0 = new Model.Input
        {
            name = "input0",
            shape = (new SymbolicTensorShape(1, m_trainedHiddenStates, m_paddedImageSize, m_paddedImageSize)),
            dataType=DataType.Float
        };

        var input1 = new Model.Input
        {
            name = "input1",
            shape = (new SymbolicTensorShape(1, m_trainedHiddenStates, m_paddedImageSize, m_paddedImageSize)),
            dataType = DataType.Float
        };

        var inputStepSize = new Model.Input
        {
            name = "inputStepSize",
            shape = new SymbolicTensorShape(1, 1, 1, 1),
            dataType = DataType.Float
        };

        m_Model.inputs.Add(input0);
        m_Model.inputs.Add(input1);
        m_Model.inputs.Add(inputStepSize);

        m_Model.AddConstant(new Lays.Constant("aliveRate", new TensorFloat(new TensorShape(1, 1, 1, 1), new[] { 0.1f })));

        m_Model.AddConstant(new Lays.Constant("sliceStarts", new int[] { 0, 3, 0, 0 }));
        m_Model.AddConstant(new Lays.Constant("sliceEnds", new[] { 1, 4 ,m_paddedImageSize, m_paddedImageSize }));

        m_Model.AddLayer(new Lays.Slice("sliceI0", "input0", "sliceStarts", "sliceEnds"));
        m_Model.AddLayer(new Lays.MaxPool("maxpool0", "sliceI0", new[] { 3, 3 }, new[] { 1, 1 }, new[] { 1, 1, 1, 1 }));
        m_Model.AddLayer(new Lays.Greater("pre_life_mask", "maxpool0", "aliveRate")); //INT
        
        m_Model.AddLayer(new Lays.Mul("input1_stepsize",  "input1", "inputStepSize" ));
        
        m_Model.AddLayer(new Lays.RandomUniform("random", new int[] { 1, 1, m_paddedImageSize, m_paddedImageSize}, 0.0f, 1.0f, 0));
        m_Model.AddConstant(new Lays.Constant("fireRate", new TensorFloat(new TensorShape(1, 1, 1, 1), new[] { 0.5f })));
        m_Model.AddLayer(new Lays.LessOrEqual("lessEqualFireRateINT", "random", "fireRate"));

        m_Model.AddLayer(new Lays.Cast("lessEqualFireRate", "lessEqualFireRateINT", DataType.Float));
        
        m_Model.AddLayer(new Lays.Mul("mul", "input1_stepsize", "lessEqualFireRate" ));
        
        m_Model.AddLayer(new Lays.Add("add", "input0", "mul" ));
        
        m_Model.AddLayer(new Lays.Slice("sliceI1", "add", "sliceStarts", "sliceEnds"));
        m_Model.AddLayer(new Lays.MaxPool("maxpool1", "sliceI1", new [] { 3 ,3 }, new[] { 1, 1 }, new[] {1, 1, 1, 1}));
        m_Model.AddLayer(new Lays.Greater("post_life_mask", "maxpool1", "aliveRate"));

        
        m_Model.AddLayer(new Lays.And("andINT", "pre_life_mask", "post_life_mask"));
        m_Model.AddLayer(new Lays.Cast("and", "andINT", DataType.Float));
        
        m_Model.AddLayer(new Lays.Mul("outputState", "add", "and" ));

        m_Model.AddConstant(new Lays.Constant("sliceStarts2", new[] { 0, 0, trainedPool, trainedPool }));
        m_Model.AddConstant(new Lays.Constant("sliceEnds2", new[] { 1, 4, m_paddedImageSize - trainedPool, m_paddedImageSize - trainedPool }));

        m_Model.AddLayer(new Lays.Slice("outputImage", "outputState", "sliceStarts2", "sliceEnds2"));
        
        m_Model.AddLayer(new Lays.Slice("outputIC", "outputImage", "sliceStarts", "sliceEnds"));

        int blockSize = trainedResolution / alphaBlocks;
        m_Model.AddLayer(new Lays.AveragePool("avgPoolBlocks", "outputIC", new[] { blockSize, blockSize }, new[] { blockSize, blockSize }, new[] { 1, 1, 1, 1 }));

        m_Model.outputs.Add("outputState");
        m_Model.outputs.Add("outputImage");
        m_Model.outputs.Add("avgPoolBlocks");
        
        m_WorkerClip = WorkerFactory.CreateWorker(backend, m_Model);

    }

    void SetupState()
    {
        float[] data = new float[1 * m_paddedImageSize * m_paddedImageSize * m_trainedHiddenStates];
        m_currentStateTensor = new TensorFloat(new TensorShape(1, m_trainedHiddenStates, m_paddedImageSize, m_paddedImageSize), data);
    }

    void SetupTextures()
    {
        m_currentStateTexture = new RenderTexture(trainedResolution, trainedResolution, 0)
        {
            enableRandomWrite = true
        };
        outputMaterial.mainTexture = m_currentStateTexture;

        if (avgAlphaMaterial)
        {
            m_currentBlockAlphaStateTexture = new RenderTexture(alphaBlocks, alphaBlocks, 0)
            {
                enableRandomWrite = true
            };
            outputMaterial.mainTexture = m_currentBlockAlphaStateTexture;
        }
    }

    void DrawDotAt(int x,int y)
    {
        m_currentStateTensor.MakeReadable();

        float[] data = m_currentStateTensor.ToReadOnlyArray();
        for (int k = 3; k < 16; k++)
        {
            data[m_paddedImageSize * m_paddedImageSize * k + m_paddedImageSize * y + x] = 1f;
        }
        Replace(ref m_currentStateTensor, new TensorFloat(m_currentStateTensor.shape, data));
    }

    void Update()
    {
        DoInference();
        if (Input.GetKeyDown(KeyCode.Escape))
        {
            Application.Quit();
        }
        if (Input.GetKeyDown(KeyCode.Space))
        {
            DrawDotAt(UnityEngine.Random.Range(0, m_paddedImageSize), UnityEngine.Random.Range(0, m_paddedImageSize));
        }
    }

    void Replace(ref TensorFloat A, TensorFloat B)
    {
        A?.Dispose();
        A = B;
    }

    void DoInference() {

        using var stepSizeTensor = new TensorFloat(new TensorShape(1, 1, 1, 1), new float[] { stepSize });

        using var currentStateTensorT = m_ops.Transpose(m_currentStateTensor, new int[] { 0, 2, 3, 1 });

        m_WorkerStateUpdate.Execute(currentStateTensorT);
        TensorFloat outputStateT = m_WorkerStateUpdate.PeekOutput() as TensorFloat;

        using var outputState = m_ops.Transpose(outputStateT, new int[] { 0, 3, 1, 2 });

        var inputs = new Dictionary<string, Tensor>() { 
            { "input0", m_currentStateTensor }, //float
            { "input1", outputState }, //float
            { "inputStepSize", stepSizeTensor }  //float
        };
        m_WorkerClip.Execute(inputs);

        TensorFloat clippedState = m_WorkerClip.PeekOutput("outputState") as TensorFloat;
        TensorFloat outputImage = m_WorkerClip.PeekOutput("outputImage") as TensorFloat;
        TensorFloat blockAvgAlphaState = m_WorkerClip.PeekOutput("avgPoolBlocks") as TensorFloat;

        if (m_currentStateTexture)
        {
            TextureConverter.RenderToTexture(outputImage, m_currentStateTexture);
        }

        if (m_currentBlockAlphaStateTexture)
        {
            TextureConverter.RenderToTexture(blockAvgAlphaState, m_currentBlockAlphaStateTexture);
        }

        Replace(ref m_currentStateTensor, clippedState);
        m_currentStateTensor.TakeOwnership();
    }

    void OnDestroy()
    {
        m_currentStateTensor.Dispose();

        m_WorkerStateUpdate.Dispose();
        m_WorkerClip.Dispose();

        m_ops?.Dispose();
        m_allocator?.Dispose();
    }
   
}