File size: 9,698 Bytes
9be3f67 1c420fe 9be3f67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using Unity.Sentis;
using System.IO;
using Lays = Unity.Sentis.Layers;
/*
* Neural Cellular Automata Inference Code
* =======================================
*
* Put this script on the Main Camera
* Create an image or quad in the scene.
* Assign an unlit transparent material to the image/quad.
* Draw the same material into the outputMaterial field
*
*/
public class RunAutomata : MonoBehaviour
{
//Change this to load a different model:
public AutomataNames automataName = AutomataNames.Poop;
//Reduce this to make it run slower
[Range(0f, 1f)]
public float stepSize = 1.0f;
const BackendType backend = BackendType.GPUCompute;
//Drag your unlit transparent material here for drawing the output
public Material outputMaterial;
//optional material for average alpha
public Material avgAlphaMaterial;
public enum AutomataNames { Lizard, Turtle ,Poop};
//Model parameters
const int trainedResolution = 40;
const int trainedPool = 16;
const int alphaBlocks = 4;
int m_paddedImageSize;
int m_trainedHiddenStates;
//Workers to run the networks
private IWorker m_WorkerStateUpdate;
private IWorker m_WorkerClip;
private TensorFloat m_currentStateTensor;
private RenderTexture m_currentStateTexture;
private RenderTexture m_currentBlockAlphaStateTexture;
Ops m_ops;
ITensorAllocator m_allocator;
void Start()
{
m_allocator = new TensorCachingAllocator();
m_ops = WorkerFactory.CreateOps(backend, m_allocator);
Application.targetFrameRate = 60;
LoadAutomataModel();
CreateProcessingModel();
SetupState();
SetupTextures();
DrawDotAt(m_paddedImageSize / 2, m_paddedImageSize / 2);
}
void LoadAutomataModel() {
Model m_ModelStateUpdate = null;
switch (automataName) {
case AutomataNames.Lizard:
m_ModelStateUpdate = ModelLoader.Load(Application.streamingAssetsPath + "/lizard.sentis");
break;
case AutomataNames.Turtle:
m_ModelStateUpdate = ModelLoader.Load(Application.streamingAssetsPath + "/turtle.sentis");
break;
case AutomataNames.Poop:
m_ModelStateUpdate = ModelLoader.Load(Application.streamingAssetsPath + "/poop.sentis");
break;
}
m_trainedHiddenStates = m_ModelStateUpdate.inputs[0].shape[3].value;
m_paddedImageSize = trainedResolution + trainedPool * 2;
m_WorkerStateUpdate = WorkerFactory.CreateWorker(backend, m_ModelStateUpdate, false);
}
void CreateProcessingModel() {
var m_Model = new Model();
var input0 = new Model.Input
{
name = "input0",
shape = (new SymbolicTensorShape(1, m_trainedHiddenStates, m_paddedImageSize, m_paddedImageSize)),
dataType=DataType.Float
};
var input1 = new Model.Input
{
name = "input1",
shape = (new SymbolicTensorShape(1, m_trainedHiddenStates, m_paddedImageSize, m_paddedImageSize)),
dataType = DataType.Float
};
var inputStepSize = new Model.Input
{
name = "inputStepSize",
shape = new SymbolicTensorShape(1, 1, 1, 1),
dataType = DataType.Float
};
m_Model.inputs.Add(input0);
m_Model.inputs.Add(input1);
m_Model.inputs.Add(inputStepSize);
m_Model.AddConstant(new Lays.Constant("aliveRate", new TensorFloat(new TensorShape(1, 1, 1, 1), new[] { 0.1f })));
m_Model.AddConstant(new Lays.Constant("sliceStarts", new int[] { 0, 3, 0, 0 }));
m_Model.AddConstant(new Lays.Constant("sliceEnds", new[] { 1, 4 ,m_paddedImageSize, m_paddedImageSize }));
m_Model.AddLayer(new Lays.Slice("sliceI0", "input0", "sliceStarts", "sliceEnds"));
m_Model.AddLayer(new Lays.MaxPool("maxpool0", "sliceI0", new[] { 3, 3 }, new[] { 1, 1 }, new[] { 1, 1, 1, 1 }));
m_Model.AddLayer(new Lays.Greater("pre_life_mask", "maxpool0", "aliveRate")); //INT
m_Model.AddLayer(new Lays.Mul("input1_stepsize", "input1", "inputStepSize" ));
m_Model.AddLayer(new Lays.RandomUniform("random", new int[] { 1, 1, m_paddedImageSize, m_paddedImageSize}, 0.0f, 1.0f, 0));
m_Model.AddConstant(new Lays.Constant("fireRate", new TensorFloat(new TensorShape(1, 1, 1, 1), new[] { 0.5f })));
m_Model.AddLayer(new Lays.LessOrEqual("lessEqualFireRateINT", "random", "fireRate"));
m_Model.AddLayer(new Lays.Cast("lessEqualFireRate", "lessEqualFireRateINT", DataType.Float));
m_Model.AddLayer(new Lays.Mul("mul", "input1_stepsize", "lessEqualFireRate" ));
m_Model.AddLayer(new Lays.Add("add", "input0", "mul" ));
m_Model.AddLayer(new Lays.Slice("sliceI1", "add", "sliceStarts", "sliceEnds"));
m_Model.AddLayer(new Lays.MaxPool("maxpool1", "sliceI1", new [] { 3 ,3 }, new[] { 1, 1 }, new[] {1, 1, 1, 1}));
m_Model.AddLayer(new Lays.Greater("post_life_mask", "maxpool1", "aliveRate"));
m_Model.AddLayer(new Lays.And("andINT", "pre_life_mask", "post_life_mask"));
m_Model.AddLayer(new Lays.Cast("and", "andINT", DataType.Float));
m_Model.AddLayer(new Lays.Mul("outputState", "add", "and" ));
m_Model.AddConstant(new Lays.Constant("sliceStarts2", new[] { 0, 0, trainedPool, trainedPool }));
m_Model.AddConstant(new Lays.Constant("sliceEnds2", new[] { 1, 4, m_paddedImageSize - trainedPool, m_paddedImageSize - trainedPool }));
m_Model.AddLayer(new Lays.Slice("outputImage", "outputState", "sliceStarts2", "sliceEnds2"));
m_Model.AddLayer(new Lays.Slice("outputIC", "outputImage", "sliceStarts", "sliceEnds"));
int blockSize = trainedResolution / alphaBlocks;
m_Model.AddLayer(new Lays.AveragePool("avgPoolBlocks", "outputIC", new[] { blockSize, blockSize }, new[] { blockSize, blockSize }, new[] { 1, 1, 1, 1 }));
m_Model.outputs.Add("outputState");
m_Model.outputs.Add("outputImage");
m_Model.outputs.Add("avgPoolBlocks");
m_WorkerClip = WorkerFactory.CreateWorker(backend, m_Model);
}
void SetupState()
{
float[] data = new float[1 * m_paddedImageSize * m_paddedImageSize * m_trainedHiddenStates];
m_currentStateTensor = new TensorFloat(new TensorShape(1, m_trainedHiddenStates, m_paddedImageSize, m_paddedImageSize), data);
}
void SetupTextures()
{
m_currentStateTexture = new RenderTexture(trainedResolution, trainedResolution, 0)
{
enableRandomWrite = true
};
outputMaterial.mainTexture = m_currentStateTexture;
if (avgAlphaMaterial)
{
m_currentBlockAlphaStateTexture = new RenderTexture(alphaBlocks, alphaBlocks, 0)
{
enableRandomWrite = true
};
outputMaterial.mainTexture = m_currentBlockAlphaStateTexture;
}
}
void DrawDotAt(int x,int y)
{
m_currentStateTensor.MakeReadable();
float[] data = m_currentStateTensor.ToReadOnlyArray();
for (int k = 3; k < 16; k++)
{
data[m_paddedImageSize * m_paddedImageSize * k + m_paddedImageSize * y + x] = 1f;
}
Replace(ref m_currentStateTensor, new TensorFloat(m_currentStateTensor.shape, data));
}
void Update()
{
DoInference();
if (Input.GetKeyDown(KeyCode.Escape))
{
Application.Quit();
}
if (Input.GetKeyDown(KeyCode.Space))
{
DrawDotAt(UnityEngine.Random.Range(0, m_paddedImageSize), UnityEngine.Random.Range(0, m_paddedImageSize));
}
}
void Replace(ref TensorFloat A, TensorFloat B)
{
A?.Dispose();
A = B;
}
void DoInference() {
using var stepSizeTensor = new TensorFloat(new TensorShape(1, 1, 1, 1), new float[] { stepSize });
using var currentStateTensorT = m_ops.Transpose(m_currentStateTensor, new int[] { 0, 2, 3, 1 });
m_WorkerStateUpdate.Execute(currentStateTensorT);
TensorFloat outputStateT = m_WorkerStateUpdate.PeekOutput() as TensorFloat;
using var outputState = m_ops.Transpose(outputStateT, new int[] { 0, 3, 1, 2 });
var inputs = new Dictionary<string, Tensor>() {
{ "input0", m_currentStateTensor }, //float
{ "input1", outputState }, //float
{ "inputStepSize", stepSizeTensor } //float
};
m_WorkerClip.Execute(inputs);
TensorFloat clippedState = m_WorkerClip.PeekOutput("outputState") as TensorFloat;
TensorFloat outputImage = m_WorkerClip.PeekOutput("outputImage") as TensorFloat;
TensorFloat blockAvgAlphaState = m_WorkerClip.PeekOutput("avgPoolBlocks") as TensorFloat;
if (m_currentStateTexture)
{
TextureConverter.RenderToTexture(outputImage, m_currentStateTexture);
}
if (m_currentBlockAlphaStateTexture)
{
TextureConverter.RenderToTexture(blockAvgAlphaState, m_currentBlockAlphaStateTexture);
}
Replace(ref m_currentStateTensor, clippedState);
m_currentStateTensor.TakeOwnership();
}
void OnDestroy()
{
m_currentStateTensor.Dispose();
m_WorkerStateUpdate.Dispose();
m_WorkerClip.Dispose();
m_ops?.Dispose();
m_allocator?.Dispose();
}
}
|