umutkavakli
commited on
Commit
·
fca6c6a
1
Parent(s):
c070cc6
First PPO LunarLander-v2 architecture trained
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 260.31 +/- 21.73
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3066c5ca60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3066c5caf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3066c5cb80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3066c5cc10>", "_build": "<function ActorCriticPolicy._build at 0x7f3066c5cca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3066c5cd30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3066c5cdc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3066c5ce50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3066c5cee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3066c5cf70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3066c5f040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3066c5f0d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3066be0040>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678836672676165794, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDviz1IB7o74LcqPWcrH74VdJc9G+YAPQAAAAAAAIA/ZpwpPVLo37n2qz21dxI2r1iC8jp+A0o0AACAPwAAgD9mysG7znG0PyKdv72FwZq9QFFZOjgjk7wAAAAAAAAAAM2r9Dx+f5M+G90ZvK22gb6aEg09KrTpvQAAAAAAAAAAg+mQPi2FOD8S52c+mcj7vpL75D6/l5O9AAAAAAAAAABNkMa9my6ePz3UC76ycf2+RTgpvvbZH70AAAAAAAAAAOYxZz50JMw+qYi2vvCKm76kHzK8t8ewvQAAAAAAAAAAZlJoPatQFT8FviW+U2ydvnRR2jwZuL+9AAAAAAAAAACaT1s81zNyuZOxfLragQ61sNBHu56mlDkAAIA/AACAPzNfdz0p5F+6tab/unEd0bWAlBo7QkQROgAAgD8AAIA/5hKEvbgBors38cE9bg6VPSYefbyi0Xw8AACAPwAAgD/N4tY8v/phP16L3byTv+O+Gy/1PKS5hjwAAAAAAAAAADMrET2KWQ8+Y7nMPWzbjb5XJq89TkkCvQAAAAAAAAAAAKgWu/NeKD9jV1G8qw7CvnjlO7z3OkQ8AAAAAAAAAAADSYA+wW2EP63WQj6aXAm/tK6pPj/VF70AAAAAAAAAADOkpbzDMWq6hmU3O68iuLVqjo66kClRugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYcJoVra7bkCUhpRSlIwBbJRL/YwBdJRHQJgoPujRD1J1fZQoaAZoCWgPQwiaXmIs0+1QQJSGlFKUaBVLkWgWR0CYKgK9wm3OdX2UKGgGaAloD0MI6IcRwiOabkCUhpRSlGgVTU0BaBZHQJgq3c1wYLt1fZQoaAZoCWgPQwj+J3/3jlduQJSGlFKUaBVNCAFoFkdAmCs0j9n9N3V9lChoBmgJaA9DCISDvYkhG29AlIaUUpRoFU0jAWgWR0CYK0dPtUn5dX2UKGgGaAloD0MIAdvBiD26ckCUhpRSlGgVS+hoFkdAmELPW1+iJ3V9lChoBmgJaA9DCAHbwYg9n3BAlIaUUpRoFU0RAWgWR0CYQ6yn1nM/dX2UKGgGaAloD0MIfh04Z4QCcUCUhpRSlGgVTVQBaBZHQJhEyVyFPBV1fZQoaAZoCWgPQwjrH0QypLRxQJSGlFKUaBVL9mgWR0CYRQdfb9IgdX2UKGgGaAloD0MIkfP+Pw6tcUCUhpRSlGgVTQQBaBZHQJhGpo0ygwp1fZQoaAZoCWgPQwg5KjdRy5xuQJSGlFKUaBVNjQFoFkdAmEa6m0mdAnV9lChoBmgJaA9DCB7EzhS6jm9AlIaUUpRoFU1DAWgWR0CYR2aG5+YudX2UKGgGaAloD0MI3Siy1hBFcUCUhpRSlGgVTUoBaBZHQJhHsWVNYbN1fZQoaAZoCWgPQwgDmDJwQK1yQJSGlFKUaBVNYwFoFkdAmEhdVmz0H3V9lChoBmgJaA9DCL0A++jU90hAlIaUUpRoFUu4aBZHQJhI87Qswtd1fZQoaAZoCWgPQwi5xJEHIlFxQJSGlFKUaBVNtQFoFkdAmEmC5y2hI3V9lChoBmgJaA9DCKjIIeLmiHFAlIaUUpRoFU0KAWgWR0CYSiW1c+qzdX2UKGgGaAloD0MI7unqjkV1ckCUhpRSlGgVTWMBaBZHQJhKVjI7vG91fZQoaAZoCWgPQwg+BFWjV7lBQJSGlFKUaBVLyGgWR0CYS391EE1VdX2UKGgGaAloD0MI7bjhd9NKcUCUhpRSlGgVTVABaBZHQJhMMFUyYXx1fZQoaAZoCWgPQwi1M0xtqZFxQJSGlFKUaBVNNwFoFkdAmE2pRGc4HXV9lChoBmgJaA9DCGqg+Zz7VXJAlIaUUpRoFUvPaBZHQJhNu9qUNa11fZQoaAZoCWgPQwiYTYBh+QJxQJSGlFKUaBVNKgFoFkdAmE5X+yZ8bHV9lChoBmgJaA9DCDY+k/1za3BAlIaUUpRoFU3AAWgWR0CYT4cnmaH9dX2UKGgGaAloD0MIasAg6dMvb0CUhpRSlGgVTSkBaBZHQJhQE3DNyHV1fZQoaAZoCWgPQwiOzCN/sNtvQJSGlFKUaBVNSQFoFkdAmFI8UypJgHV9lChoBmgJaA9DCNeEtMYgtG5AlIaUUpRoFU1FAWgWR0CYUuqU/wAmdX2UKGgGaAloD0MIx4MtdjuAcUCUhpRSlGgVTYMBaBZHQJhTXc/MW451fZQoaAZoCWgPQwiUvDrHAM9vQJSGlFKUaBVNQAFoFkdAmFQWi+L3sXV9lChoBmgJaA9DCL8Qct6/0nJAlIaUUpRoFU0KAWgWR0CYVIDhLoOhdX2UKGgGaAloD0MINKFJYklGcECUhpRSlGgVTbgCaBZHQJhVN2GIsRR1fZQoaAZoCWgPQwjiP91AAatwQJSGlFKUaBVNggFoFkdAmFWlmapgkXV9lChoBmgJaA9DCNeJy/HKmHFAlIaUUpRoFU09AWgWR0CYVtEDhcZ+dX2UKGgGaAloD0MIlEp4Qq85bkCUhpRSlGgVTTMBaBZHQJhYFrvb48F1fZQoaAZoCWgPQwi7YHDNnTByQJSGlFKUaBVNJAFoFkdAmFhDZlFtsXV9lChoBmgJaA9DCL1zKEPVhnFAlIaUUpRoFU0GAWgWR0CYWOigTRICdX2UKGgGaAloD0MIHzF6bmGLcUCUhpRSlGgVTeIBaBZHQJhZ+2UjcEh1fZQoaAZoCWgPQwgtQNtqljpwQJSGlFKUaBVNcwFoFkdAmFo1/lQuVXV9lChoBmgJaA9DCH/AAwOI3W5AlIaUUpRoFU1TAWgWR0CYXaOafBepdX2UKGgGaAloD0MIEynN5jGPckCUhpRSlGgVTR4BaBZHQJheCs0YTCd1fZQoaAZoCWgPQwiFJLN6h4VPQJSGlFKUaBVLv2gWR0CYXqfe1rqMdX2UKGgGaAloD0MIdk8eFqolcECUhpRSlGgVTWECaBZHQJheshwEQoV1fZQoaAZoCWgPQwjb4ET0a1twQJSGlFKUaBVNHAFoFkdAmF9FH4Glh3V9lChoBmgJaA9DCMDLDBtltlBAlIaUUpRoFUuRaBZHQJhfWBoVVPx1fZQoaAZoCWgPQwhSCrq95NtwQJSGlFKUaBVN0wFoFkdAmF9+ANG3F3V9lChoBmgJaA9DCJNVEW6y9nFAlIaUUpRoFU1WAWgWR0CYX6G+bmU4dX2UKGgGaAloD0MIMA3DRwSLcECUhpRSlGgVTX0BaBZHQJhgI4GUwBZ1fZQoaAZoCWgPQwgeboeGxSZtQJSGlFKUaBVNJgFoFkdAmGDRXfZVXHV9lChoBmgJaA9DCDOMu0G0pWVAlIaUUpRoFU3oA2gWR0CYYcEBKcurdX2UKGgGaAloD0MI7na9NEXSbkCUhpRSlGgVTRYBaBZHQJhiqnGbTc91fZQoaAZoCWgPQwgL7DGR0tlwQJSGlFKUaBVNWAFoFkdAmH1WQbMot3V9lChoBmgJaA9DCCgoRSu3wXFAlIaUUpRoFU0MAWgWR0CYflbvw3HadX2UKGgGaAloD0MI8zl3u172bUCUhpRSlGgVTcEBaBZHQJh/DMgU1yh1fZQoaAZoCWgPQwgwEW+dPwxwQJSGlFKUaBVNIgJoFkdAmH8kr08NhHV9lChoBmgJaA9DCP1JfO6E9G5AlIaUUpRoFU0JAWgWR0CYfyVWjoIOdX2UKGgGaAloD0MIDk+vlCV5cUCUhpRSlGgVTQoBaBZHQJh/JRLsa891fZQoaAZoCWgPQwiqfqXz4SVuQJSGlFKUaBVL/WgWR0CYf1UGmk30dX2UKGgGaAloD0MIGMxfIfPxckCUhpRSlGgVTQYBaBZHQJh/vhOxjax1fZQoaAZoCWgPQwg6r7FLVL9uQJSGlFKUaBVNfwJoFkdAmH/MmjTKDHV9lChoBmgJaA9DCGaIY11cl3JAlIaUUpRoFU0VAWgWR0CYgAMcZLqVdX2UKGgGaAloD0MI7Q4pBkg5ckCUhpRSlGgVTU8BaBZHQJiBYf9xZMd1fZQoaAZoCWgPQwhC0qdVtD9xQJSGlFKUaBVNCwFoFkdAmIF4HPeHi3V9lChoBmgJaA9DCErrbwnARm9AlIaUUpRoFU0eAWgWR0CYgq4Oc2BKdX2UKGgGaAloD0MItMh2vt+McECUhpRSlGgVTWIBaBZHQJiCs94eLeh1fZQoaAZoCWgPQwiZ2HxcG6ZvQJSGlFKUaBVNgwFoFkdAmIQdS2phnnV9lChoBmgJaA9DCCqtvyUAdXBAlIaUUpRoFU0FAmgWR0CYhYtHQQcxdX2UKGgGaAloD0MIwTbiyS7ccECUhpRSlGgVS9doFkdAmIYAWN3np3V9lChoBmgJaA9DCLjkuFO67HFAlIaUUpRoFU0WAWgWR0CYhiB4lhPTdX2UKGgGaAloD0MIboYb8Pn4cUCUhpRSlGgVTUwBaBZHQJiG2Pgeii91fZQoaAZoCWgPQwhoz2VqEpRwQJSGlFKUaBVNNgFoFkdAmIgM2NvOyHV9lChoBmgJaA9DCMtKk1KQV3FAlIaUUpRoFU1AAWgWR0CYiCMdLg4wdX2UKGgGaAloD0MIS1gbYychbUCUhpRSlGgVS+1oFkdAmIhTcynDSHV9lChoBmgJaA9DCGDNAYL5GXJAlIaUUpRoFU0DAWgWR0CYiN6+36RAdX2UKGgGaAloD0MIkiHH1nOsckCUhpRSlGgVTXYBaBZHQJiJpxuKoAJ1fZQoaAZoCWgPQwhYGvhRzTJyQJSGlFKUaBVNfwFoFkdAmInVI7Njb3V9lChoBmgJaA9DCDQw8rImmnJAlIaUUpRoFU2bAWgWR0CYir0jkdWAdX2UKGgGaAloD0MIaeGyCpvFb0CUhpRSlGgVTZwBaBZHQJiLglfJFLF1fZQoaAZoCWgPQwifr1kumy5uQJSGlFKUaBVNYwFoFkdAmI0FFhG6PXV9lChoBmgJaA9DCGkB2laz/3FAlIaUUpRoFU0KAWgWR0CYjdw8GLUDdX2UKGgGaAloD0MIzNJOzaVbcUCUhpRSlGgVTR0BaBZHQJiN/d+G47R1fZQoaAZoCWgPQwjvy5ntCgdxQJSGlFKUaBVNNAFoFkdAmI9JwXIlt3V9lChoBmgJaA9DCINtxJNdQm5AlIaUUpRoFU2HAWgWR0CYj8aGpMpPdX2UKGgGaAloD0MIzc6id+qecECUhpRSlGgVTTYBaBZHQJiRZ0Rvm5l1fZQoaAZoCWgPQwgd6QyM/MxwQJSGlFKUaBVNMAFoFkdAmJGHdCVrynV9lChoBmgJaA9DCNeJy/EKbXFAlIaUUpRoFU1mAmgWR0CYkcACGN70dX2UKGgGaAloD0MIWJHRAcnqb0CUhpRSlGgVTT8BaBZHQJiRyT3Zf2N1fZQoaAZoCWgPQwhfRNsx9QpzQJSGlFKUaBVNSQFoFkdAmJLYEbHZK3V9lChoBmgJaA9DCN+KxAT1RXBAlIaUUpRoFU1JAWgWR0CYk7ar3j+8dX2UKGgGaAloD0MIqTP3kHAAckCUhpRSlGgVS+doFkdAmJQ6AWi1zHV9lChoBmgJaA9DCOCcEaW9c3BAlIaUUpRoFU15AWgWR0CYlWbI91U3dX2UKGgGaAloD0MIkUdwI6WQckCUhpRSlGgVTQcBaBZHQJiWOb+cYqJ1fZQoaAZoCWgPQwhSY0LMpY1sQJSGlFKUaBVNjgJoFkdAmJZdPci4a3V9lChoBmgJaA9DCBN/FHUm73BAlIaUUpRoFU0SAWgWR0CYl+K+SKWLdX2UKGgGaAloD0MIxVT6CSencECUhpRSlGgVTaUBaBZHQJiYq1w5vLp1fZQoaAZoCWgPQwjwUX+9QjlwQJSGlFKUaBVNWQFoFkdAmJi+C5EtunV9lChoBmgJaA9DCP4qwHdb1XBAlIaUUpRoFUv4aBZHQJiZUU9IPLB1fZQoaAZoCWgPQwgsnnqkwSVFQJSGlFKUaBVLsWgWR0CYmVh8YyfudX2UKGgGaAloD0MIWi+GcqJacUCUhpRSlGgVTdkBaBZHQJiZdr8BMi91fZQoaAZoCWgPQwgFiIIZU9FxQJSGlFKUaBVL/GgWR0CYmaPoV2zOdX2UKGgGaAloD0MINfCjGvYnc0CUhpRSlGgVTTIBaBZHQJiazRE4Nqh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2eea53ef5d60d73cb019fd15ce1d5d2f11bd7fdb737c9571941246894a3d9b72
|
3 |
+
size 147409
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3066c5ca60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3066c5caf0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3066c5cb80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3066c5cc10>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3066c5cca0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3066c5cd30>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3066c5cdc0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3066c5ce50>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3066c5cee0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3066c5cf70>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3066c5f040>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3066c5f0d0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f3066be0040>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678836672676165794,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDviz1IB7o74LcqPWcrH74VdJc9G+YAPQAAAAAAAIA/ZpwpPVLo37n2qz21dxI2r1iC8jp+A0o0AACAPwAAgD9mysG7znG0PyKdv72FwZq9QFFZOjgjk7wAAAAAAAAAAM2r9Dx+f5M+G90ZvK22gb6aEg09KrTpvQAAAAAAAAAAg+mQPi2FOD8S52c+mcj7vpL75D6/l5O9AAAAAAAAAABNkMa9my6ePz3UC76ycf2+RTgpvvbZH70AAAAAAAAAAOYxZz50JMw+qYi2vvCKm76kHzK8t8ewvQAAAAAAAAAAZlJoPatQFT8FviW+U2ydvnRR2jwZuL+9AAAAAAAAAACaT1s81zNyuZOxfLragQ61sNBHu56mlDkAAIA/AACAPzNfdz0p5F+6tab/unEd0bWAlBo7QkQROgAAgD8AAIA/5hKEvbgBors38cE9bg6VPSYefbyi0Xw8AACAPwAAgD/N4tY8v/phP16L3byTv+O+Gy/1PKS5hjwAAAAAAAAAADMrET2KWQ8+Y7nMPWzbjb5XJq89TkkCvQAAAAAAAAAAAKgWu/NeKD9jV1G8qw7CvnjlO7z3OkQ8AAAAAAAAAAADSYA+wW2EP63WQj6aXAm/tK6pPj/VF70AAAAAAAAAADOkpbzDMWq6hmU3O68iuLVqjo66kClRugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYcJoVra7bkCUhpRSlIwBbJRL/YwBdJRHQJgoPujRD1J1fZQoaAZoCWgPQwiaXmIs0+1QQJSGlFKUaBVLkWgWR0CYKgK9wm3OdX2UKGgGaAloD0MI6IcRwiOabkCUhpRSlGgVTU0BaBZHQJgq3c1wYLt1fZQoaAZoCWgPQwj+J3/3jlduQJSGlFKUaBVNCAFoFkdAmCs0j9n9N3V9lChoBmgJaA9DCISDvYkhG29AlIaUUpRoFU0jAWgWR0CYK0dPtUn5dX2UKGgGaAloD0MIAdvBiD26ckCUhpRSlGgVS+hoFkdAmELPW1+iJ3V9lChoBmgJaA9DCAHbwYg9n3BAlIaUUpRoFU0RAWgWR0CYQ6yn1nM/dX2UKGgGaAloD0MIfh04Z4QCcUCUhpRSlGgVTVQBaBZHQJhEyVyFPBV1fZQoaAZoCWgPQwjrH0QypLRxQJSGlFKUaBVL9mgWR0CYRQdfb9IgdX2UKGgGaAloD0MIkfP+Pw6tcUCUhpRSlGgVTQQBaBZHQJhGpo0ygwp1fZQoaAZoCWgPQwg5KjdRy5xuQJSGlFKUaBVNjQFoFkdAmEa6m0mdAnV9lChoBmgJaA9DCB7EzhS6jm9AlIaUUpRoFU1DAWgWR0CYR2aG5+YudX2UKGgGaAloD0MI3Siy1hBFcUCUhpRSlGgVTUoBaBZHQJhHsWVNYbN1fZQoaAZoCWgPQwgDmDJwQK1yQJSGlFKUaBVNYwFoFkdAmEhdVmz0H3V9lChoBmgJaA9DCL0A++jU90hAlIaUUpRoFUu4aBZHQJhI87Qswtd1fZQoaAZoCWgPQwi5xJEHIlFxQJSGlFKUaBVNtQFoFkdAmEmC5y2hI3V9lChoBmgJaA9DCKjIIeLmiHFAlIaUUpRoFU0KAWgWR0CYSiW1c+qzdX2UKGgGaAloD0MI7unqjkV1ckCUhpRSlGgVTWMBaBZHQJhKVjI7vG91fZQoaAZoCWgPQwg+BFWjV7lBQJSGlFKUaBVLyGgWR0CYS391EE1VdX2UKGgGaAloD0MI7bjhd9NKcUCUhpRSlGgVTVABaBZHQJhMMFUyYXx1fZQoaAZoCWgPQwi1M0xtqZFxQJSGlFKUaBVNNwFoFkdAmE2pRGc4HXV9lChoBmgJaA9DCGqg+Zz7VXJAlIaUUpRoFUvPaBZHQJhNu9qUNa11fZQoaAZoCWgPQwiYTYBh+QJxQJSGlFKUaBVNKgFoFkdAmE5X+yZ8bHV9lChoBmgJaA9DCDY+k/1za3BAlIaUUpRoFU3AAWgWR0CYT4cnmaH9dX2UKGgGaAloD0MIasAg6dMvb0CUhpRSlGgVTSkBaBZHQJhQE3DNyHV1fZQoaAZoCWgPQwiOzCN/sNtvQJSGlFKUaBVNSQFoFkdAmFI8UypJgHV9lChoBmgJaA9DCNeEtMYgtG5AlIaUUpRoFU1FAWgWR0CYUuqU/wAmdX2UKGgGaAloD0MIx4MtdjuAcUCUhpRSlGgVTYMBaBZHQJhTXc/MW451fZQoaAZoCWgPQwiUvDrHAM9vQJSGlFKUaBVNQAFoFkdAmFQWi+L3sXV9lChoBmgJaA9DCL8Qct6/0nJAlIaUUpRoFU0KAWgWR0CYVIDhLoOhdX2UKGgGaAloD0MINKFJYklGcECUhpRSlGgVTbgCaBZHQJhVN2GIsRR1fZQoaAZoCWgPQwjiP91AAatwQJSGlFKUaBVNggFoFkdAmFWlmapgkXV9lChoBmgJaA9DCNeJy/HKmHFAlIaUUpRoFU09AWgWR0CYVtEDhcZ+dX2UKGgGaAloD0MIlEp4Qq85bkCUhpRSlGgVTTMBaBZHQJhYFrvb48F1fZQoaAZoCWgPQwi7YHDNnTByQJSGlFKUaBVNJAFoFkdAmFhDZlFtsXV9lChoBmgJaA9DCL1zKEPVhnFAlIaUUpRoFU0GAWgWR0CYWOigTRICdX2UKGgGaAloD0MIHzF6bmGLcUCUhpRSlGgVTeIBaBZHQJhZ+2UjcEh1fZQoaAZoCWgPQwgtQNtqljpwQJSGlFKUaBVNcwFoFkdAmFo1/lQuVXV9lChoBmgJaA9DCH/AAwOI3W5AlIaUUpRoFU1TAWgWR0CYXaOafBepdX2UKGgGaAloD0MIEynN5jGPckCUhpRSlGgVTR4BaBZHQJheCs0YTCd1fZQoaAZoCWgPQwiFJLN6h4VPQJSGlFKUaBVLv2gWR0CYXqfe1rqMdX2UKGgGaAloD0MIdk8eFqolcECUhpRSlGgVTWECaBZHQJheshwEQoV1fZQoaAZoCWgPQwjb4ET0a1twQJSGlFKUaBVNHAFoFkdAmF9FH4Glh3V9lChoBmgJaA9DCMDLDBtltlBAlIaUUpRoFUuRaBZHQJhfWBoVVPx1fZQoaAZoCWgPQwhSCrq95NtwQJSGlFKUaBVN0wFoFkdAmF9+ANG3F3V9lChoBmgJaA9DCJNVEW6y9nFAlIaUUpRoFU1WAWgWR0CYX6G+bmU4dX2UKGgGaAloD0MIMA3DRwSLcECUhpRSlGgVTX0BaBZHQJhgI4GUwBZ1fZQoaAZoCWgPQwgeboeGxSZtQJSGlFKUaBVNJgFoFkdAmGDRXfZVXHV9lChoBmgJaA9DCDOMu0G0pWVAlIaUUpRoFU3oA2gWR0CYYcEBKcurdX2UKGgGaAloD0MI7na9NEXSbkCUhpRSlGgVTRYBaBZHQJhiqnGbTc91fZQoaAZoCWgPQwgL7DGR0tlwQJSGlFKUaBVNWAFoFkdAmH1WQbMot3V9lChoBmgJaA9DCCgoRSu3wXFAlIaUUpRoFU0MAWgWR0CYflbvw3HadX2UKGgGaAloD0MI8zl3u172bUCUhpRSlGgVTcEBaBZHQJh/DMgU1yh1fZQoaAZoCWgPQwgwEW+dPwxwQJSGlFKUaBVNIgJoFkdAmH8kr08NhHV9lChoBmgJaA9DCP1JfO6E9G5AlIaUUpRoFU0JAWgWR0CYfyVWjoIOdX2UKGgGaAloD0MIDk+vlCV5cUCUhpRSlGgVTQoBaBZHQJh/JRLsa891fZQoaAZoCWgPQwiqfqXz4SVuQJSGlFKUaBVL/WgWR0CYf1UGmk30dX2UKGgGaAloD0MIGMxfIfPxckCUhpRSlGgVTQYBaBZHQJh/vhOxjax1fZQoaAZoCWgPQwg6r7FLVL9uQJSGlFKUaBVNfwJoFkdAmH/MmjTKDHV9lChoBmgJaA9DCGaIY11cl3JAlIaUUpRoFU0VAWgWR0CYgAMcZLqVdX2UKGgGaAloD0MI7Q4pBkg5ckCUhpRSlGgVTU8BaBZHQJiBYf9xZMd1fZQoaAZoCWgPQwhC0qdVtD9xQJSGlFKUaBVNCwFoFkdAmIF4HPeHi3V9lChoBmgJaA9DCErrbwnARm9AlIaUUpRoFU0eAWgWR0CYgq4Oc2BKdX2UKGgGaAloD0MItMh2vt+McECUhpRSlGgVTWIBaBZHQJiCs94eLeh1fZQoaAZoCWgPQwiZ2HxcG6ZvQJSGlFKUaBVNgwFoFkdAmIQdS2phnnV9lChoBmgJaA9DCCqtvyUAdXBAlIaUUpRoFU0FAmgWR0CYhYtHQQcxdX2UKGgGaAloD0MIwTbiyS7ccECUhpRSlGgVS9doFkdAmIYAWN3np3V9lChoBmgJaA9DCLjkuFO67HFAlIaUUpRoFU0WAWgWR0CYhiB4lhPTdX2UKGgGaAloD0MIboYb8Pn4cUCUhpRSlGgVTUwBaBZHQJiG2Pgeii91fZQoaAZoCWgPQwhoz2VqEpRwQJSGlFKUaBVNNgFoFkdAmIgM2NvOyHV9lChoBmgJaA9DCMtKk1KQV3FAlIaUUpRoFU1AAWgWR0CYiCMdLg4wdX2UKGgGaAloD0MIS1gbYychbUCUhpRSlGgVS+1oFkdAmIhTcynDSHV9lChoBmgJaA9DCGDNAYL5GXJAlIaUUpRoFU0DAWgWR0CYiN6+36RAdX2UKGgGaAloD0MIkiHH1nOsckCUhpRSlGgVTXYBaBZHQJiJpxuKoAJ1fZQoaAZoCWgPQwhYGvhRzTJyQJSGlFKUaBVNfwFoFkdAmInVI7Njb3V9lChoBmgJaA9DCDQw8rImmnJAlIaUUpRoFU2bAWgWR0CYir0jkdWAdX2UKGgGaAloD0MIaeGyCpvFb0CUhpRSlGgVTZwBaBZHQJiLglfJFLF1fZQoaAZoCWgPQwifr1kumy5uQJSGlFKUaBVNYwFoFkdAmI0FFhG6PXV9lChoBmgJaA9DCGkB2laz/3FAlIaUUpRoFU0KAWgWR0CYjdw8GLUDdX2UKGgGaAloD0MIzNJOzaVbcUCUhpRSlGgVTR0BaBZHQJiN/d+G47R1fZQoaAZoCWgPQwjvy5ntCgdxQJSGlFKUaBVNNAFoFkdAmI9JwXIlt3V9lChoBmgJaA9DCINtxJNdQm5AlIaUUpRoFU2HAWgWR0CYj8aGpMpPdX2UKGgGaAloD0MIzc6id+qecECUhpRSlGgVTTYBaBZHQJiRZ0Rvm5l1fZQoaAZoCWgPQwgd6QyM/MxwQJSGlFKUaBVNMAFoFkdAmJGHdCVrynV9lChoBmgJaA9DCNeJy/EKbXFAlIaUUpRoFU1mAmgWR0CYkcACGN70dX2UKGgGaAloD0MIWJHRAcnqb0CUhpRSlGgVTT8BaBZHQJiRyT3Zf2N1fZQoaAZoCWgPQwhfRNsx9QpzQJSGlFKUaBVNSQFoFkdAmJLYEbHZK3V9lChoBmgJaA9DCN+KxAT1RXBAlIaUUpRoFU1JAWgWR0CYk7ar3j+8dX2UKGgGaAloD0MIqTP3kHAAckCUhpRSlGgVS+doFkdAmJQ6AWi1zHV9lChoBmgJaA9DCOCcEaW9c3BAlIaUUpRoFU15AWgWR0CYlWbI91U3dX2UKGgGaAloD0MIkUdwI6WQckCUhpRSlGgVTQcBaBZHQJiWOb+cYqJ1fZQoaAZoCWgPQwhSY0LMpY1sQJSGlFKUaBVNjgJoFkdAmJZdPci4a3V9lChoBmgJaA9DCBN/FHUm73BAlIaUUpRoFU0SAWgWR0CYl+K+SKWLdX2UKGgGaAloD0MIxVT6CSencECUhpRSlGgVTaUBaBZHQJiYq1w5vLp1fZQoaAZoCWgPQwjwUX+9QjlwQJSGlFKUaBVNWQFoFkdAmJi+C5EtunV9lChoBmgJaA9DCP4qwHdb1XBAlIaUUpRoFUv4aBZHQJiZUU9IPLB1fZQoaAZoCWgPQwgsnnqkwSVFQJSGlFKUaBVLsWgWR0CYmVh8YyfudX2UKGgGaAloD0MIWi+GcqJacUCUhpRSlGgVTdkBaBZHQJiZdr8BMi91fZQoaAZoCWgPQwgFiIIZU9FxQJSGlFKUaBVL/GgWR0CYmaPoV2zOdX2UKGgGaAloD0MINfCjGvYnc0CUhpRSlGgVTTIBaBZHQJiazRE4Nqh1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8e5554ef98769f8d389e9162f10640565dbfcf08409beecaeb94d3e8ae3be28
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f144602e5f6acf03d922e2a146adb86595def331bb9eff909fae75dcd1c806d
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (219 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 260.3129092929606, "std_reward": 21.7332742468144, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-15T00:04:14.831448"}
|