File size: 13,725 Bytes
3cb2524
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7841fb1a1e10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7841fb1a1ea0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7841fb1a1f30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7841fb1a1fc0>", "_build": "<function ActorCriticPolicy._build at 0x7841fb1a2050>", "forward": "<function ActorCriticPolicy.forward at 0x7841fb1a20e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7841fb1a2170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7841fb1a2200>", "_predict": "<function ActorCriticPolicy._predict at 0x7841fb1a2290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7841fb1a2320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7841fb1a23b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7841fb1a2440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78419d466000>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1735535697462618733, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPbL7uJYBM9mDXVPTrfKb7MsJg9eQOTvQAAAAAAAAAAZhnBPOE4prrWRcM3r7qzMsFIm7oLSuC2AACAPwAAgD8aJgI9e7Kxukaj4DqcoII1Cra7OS5mALoAAIA/AACAP5qyiz7wEJE/WNJRPpZNv74PxZ4++lRCPAAAAAAAAAAAAF8/vRFs8j212Tw+wKBXvhQvvjwKvEe9AAAAAAAAAAAzs8a8bEurPsb/Dj67NlW+FbPFPCoaHj0AAAAAAAAAALPfi70FM3k+mSqePbvxPL5dJQI9C6MOvQAAAAAAAAAAjeU6PoxZ+D5YV4++KzeQvnD3nb2biNe8AAAAAAAAAACaAXI89jgxuvROjLxA7r+8b/OZu+gsirwAAAAAAAAAANrFRr44yYY/yCLQvtsr8r4rt4S+QK0CvgAAAAAAAAAAYI0Wvi/LTj+mEsS9dOWuvnd05b2KSMo9AAAAAAAAAABNLSY99mRcugYKjToPHC08zIVCu5ZHJD0AAIA/AACAP3PVnL7RZ9c+K6ixPjIynL4BS7O98iSFPQAAAAAAAAAAWq6KvVfwJTz2its9V1wjvmMM3jwmHO+9AAAAAAAAAABAPTU+9/9MPyA0fD05EMS+nYIAPvuieL0AAAAAAAAAAICpdz1I15S6gkoCN8DEwTFRgrq6fsUXtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHB8oDxLCeqMAWyUTbMBjAF0lEdAkqdqYVqN63V9lChoBkdAcCbjPv8ZUGgHTVIBaAhHQJKoFMFlkH51fZQoaAZHQHETmNWEK3NoB00xAWgIR0CSqPvZyuIRdX2UKGgGR0BwDfZamoBJaAdNCwFoCEdAkqnoBq9GqnV9lChoBkdAb2tmvGIbfmgHTRABaAhHQJKqCOT7l7t1fZQoaAZHQHEXkbPyCnRoB02rAWgIR0CSqkUedTYNdX2UKGgGR0BtT1Kh+OOsaAdNJQJoCEdAkr5w/cFhX3V9lChoBkdAcYba24NI9WgHTbkBaAhHQJK/3bGm1pl1fZQoaAZHQHJuNsnAqNJoB00BAmgIR0CSwC5bQkX2dX2UKGgGR0ByufOyE+PjaAdNUgFoCEdAksBeEEkjYHV9lChoBkdAcd/ltTDO1WgHTUABaAhHQJLCImPYFq11fZQoaAZHQGzC4Z2pyZNoB029AWgIR0CSwlvGZNO/dX2UKGgGR0BtfKtV7x/eaAdNgwFoCEdAksQOD3/PxHV9lChoBkdAcM4kwevIO2gHTZECaAhHQJLF+IhyKel1fZQoaAZHQHCnuBlMAWBoB00zAWgIR0CSxvCGvfTDdX2UKGgGR0BxjIujASFoaAdL/2gIR0CSxxKTjebedX2UKGgGR0ByV1A/s3Q2aAdNmAFoCEdAksi13IMjNnV9lChoBkdAcrZ7fHggo2gHTTMBaAhHQJLJAtvn8sN1fZQoaAZHQHDRp53Tuv5oB01sAWgIR0CSyj26kIomdX2UKGgGR0BxCxx6v7m/aAdNFgFoCEdAksqzriVB2XV9lChoBkdAcERGMXJo02gHTY4BaAhHQJLKyZb6guh1fZQoaAZHQHJScgpz90loB00PAWgIR0CSytCaqjrSdX2UKGgGR0BuoYMfA9FGaAdNGwFoCEdAkssUH6dlNHV9lChoBkdAcD/ibUgB92gHTWcBaAhHQJLLKvcJtzl1fZQoaAZHQHMLLBj4HopoB00AAWgIR0CSy3ZOi35OdX2UKGgGR0BsXkP1+RYBaAdNYAFoCEdAkswSaRZED3V9lChoBkdAcsw8SwnpjmgHTRgCaAhHQJLMh4Vymyh1fZQoaAZHQHAClPSDyvtoB01aAWgIR0CSzg5z5oGqdX2UKGgGR0BwNAN/e+EiaAdNFgFoCEdAks7Kguh9LHV9lChoBkdAbcEZw4sEq2gHTXEBaAhHQJLP7iDM/yJ1fZQoaAZHQHC9dAgPmPpoB002AWgIR0CS0Kc+JP69dX2UKGgGR0ByBTsD4gzQaAdNCAFoCEdAktEWe6I3znV9lChoBkdAbXMgJTl1bWgHTSkBaAhHQJLR8Lqlgtx1fZQoaAZHQHATVsxfv4NoB00FAWgIR0CS0hMY/FBIdX2UKGgGR0BxjntkWhysaAdNZgFoCEdAktJwJ9iMHnV9lChoBkdAcHQdGRV6vGgHTQwBaAhHQJLTjFvQ4S91fZQoaAZHQG7wiFj/dZdoB008AWgIR0CS1GyeZof0dX2UKGgGR0ByEwZYPoV3aAdNOAFoCEdAktSU/jbSJHV9lChoBkdAa/8SjgydnWgHTT8BaAhHQJLU44XGff51fZQoaAZHQG6L1v2oNutoB01qAWgIR0CS1bxD9fkWdX2UKGgGR0BwUnNiYsunaAdNZgFoCEdAktcR8twrD3V9lChoBkdAcI80jC53DGgHTZMBaAhHQJLXJCPZIxx1fZQoaAZHQHIKWD15B1NoB02PAWgIR0CS2Qr+HaexdX2UKGgGR0BwECz0HyEtaAdNMAFoCEdAktn/1ct5EHV9lChoBkdAcF+iEQGwA2gHTR4BaAhHQJLap1+y7f51fZQoaAZHQHKdVXNke6toB02WAWgIR0CS212ovSMMdX2UKGgGR0Bx7BSLqD9PaAdNHQFoCEdAktt++M6zV3V9lChoBkdAcP0v5gw482gHS/BoCEdAktxviLl3hXV9lChoBkdAcmvoVVPva2gHTRYBaAhHQJLc35Ec81Z1fZQoaAZHQHEYcDB/I81oB01EAWgIR0CS3Ul7tzCDdX2UKGgGR0ByPo7A+IM0aAdNPQFoCEdAkt9HPVurInV9lChoBkdAcod5hjOLSGgHTTEBaAhHQJLgQLa24NJ1fZQoaAZHQHEjUJfICEJoB02xAWgIR0CS4MqUNayKdX2UKGgGR0Bwk+3uuzQeaAdNhQFoCEdAkvWLrC3w1HV9lChoBkdAcf8OU+s5n2gHTUQCaAhHQJL1vocJdB11fZQoaAZHQHBvFhXr+o9oB01FAWgIR0CS9f8rZrYXdX2UKGgGR0Bw5dp8F6iTaAdNEQFoCEdAkvY1sHjZMHV9lChoBkdAcLPdu5z5oGgHTWQBaAhHQJL3MYaYNRZ1fZQoaAZHQG8xhTOxB3RoB00wAWgIR0CS+MPWxyGSdX2UKGgGR0BvGiFbmlqKaAdNKgFoCEdAkvsRG2Cul3V9lChoBkdAbocxmCiAUmgHTXMBaAhHQJL75rJr+Hd1fZQoaAZHQHB8SPyTY/VoB01tAWgIR0CS/JVz6rNodX2UKGgGR0Bu5xIBikO7aAdNHAFoCEdAkv2wb6xgRnV9lChoBkdAcbhrtE5QxmgHTYUBaAhHQJL/k11nuiN1fZQoaAZHQHFPkadc0LtoB00gA2gIR0CTARoAXEZSdX2UKGgGR0Bw/ATtb9qDaAdNKQFoCEdAkwJC925hB3V9lChoBkdAcQZXQMQVbmgHTTkBaAhHQJMCWbNKRMh1fZQoaAZHQG4qZjQRf4RoB00CAmgIR0CTApDHwPRRdX2UKGgGR0Bw2PIn0CiiaAdNKwFoCEdAkwNOMVDa5HV9lChoBkdAcHxMxGlQ/GgHTVABaAhHQJMDnbmEGqx1fZQoaAZHQG0yl+d9UjtoB02RAWgIR0CTBDenAIppdX2UKGgGR0Bxy2fL9uP4aAdNeQFoCEdAkwT3doFmnXV9lChoBkdAbbJ1Gsmv4mgHTV4BaAhHQJMGd+OOsDJ1fZQoaAZHQHHSyqABkqdoB01MAmgIR0CTBwqhlDnedX2UKGgGR0BwSonDziCKaAdNSwFoCEdAkwgMYEW69XV9lChoBkdAcYJ0cwQDm2gHTUQBaAhHQJMJJ21UlzF1fZQoaAZHQGzw5Ig/1QJoB01vAWgIR0CTCgcm0E5idX2UKGgGR0ByccfaHsTnaAdNawJoCEdAkwue7HyVfXV9lChoBkdAcCP5zo2XLWgHTW8BaAhHQJMLzK4hEBt1fZQoaAZHQHOHk2DQJHBoB01LAWgIR0CTDDi3ocJddX2UKGgGR0BwteObRWtEaAdNEAFoCEdAkwxZBkZrHnV9lChoBkdAckBDJU5uImgHTTYBaAhHQJMNtGI9C/p1fZQoaAZHQG6Uu6/Zdv9oB00xAWgIR0CTDnCz1K5DdX2UKGgGR0BvKycwxnFpaAdNPQFoCEdAkw6Qsf7rLXV9lChoBkdAcMS0lqrR0GgHTR0BaAhHQJMO8mLLpzN1fZQoaAZHQHFBojfNzKdoB01uAWgIR0CTD0RKYiPidX2UKGgGR0Bs7X+Q2dd3aAdNQAFoCEdAkw9c0HhS+HV9lChoBkdAcuID0lJHy2gHTQUBaAhHQJMPaj1wo9d1fZQoaAZHQHJVcAJb+tNoB00HAWgIR0CTEbNJOFg2dX2UKGgGR0BxdwHKOktVaAdNNQFoCEdAkxIrQLNOd3V9lChoBkdAcnIFxXGOuWgHTVYBaAhHQJMSTLaEi+t1fZQoaAZHQHNH5D/lyR1oB00mAWgIR0CTE18VpKzzdX2UKGgGR0BwUsRh+fAcaAdNMAJoCEdAkxRB51Ng0HV9lChoBkdAcc5iXpnpS2gHTSYBaAhHQJMU2VMVUMp1fZQoaAZHQHA+BBqsU7FoB00sAWgIR0CTFOBPsRg7dX2UKGgGR0Bww4fvF3pwaAdNHwFoCEdAkxUYTbnHN3V9lChoBkdAb+SDgZTAFmgHTQgBaAhHQJMWYJHAh0R1fZQoaAZHQHJN2fChvitoB01ZAWgIR0CTFp8w5/9YdX2UKGgGR0BzZvBN21UmaAdNNQFoCEdAkxb1NUOuq3V9lChoBkdAcX7B9Tgl4WgHTTUBaAhHQJMXlDzAeq91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}