File size: 3,730 Bytes
33d59f7 c98208a 8f53ade 635131d 33d59f7 74ab5eb ba8448b 74ab5eb 91c69a8 74ab5eb 9977692 74ab5eb d2650d0 74ab5eb e9ed184 74ab5eb 4cc3454 0c0a1dc 8daf32d 4cc3454 0c0a1dc 91c69a8 4cc3454 635131d 4cc3454 0c0a1dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
pipeline_tag: fill-mask
widget:
- text: "hào quang rực <mask>"
---
# <a name="introduction"></a> ViSoBERT: A Pre-Trained Language Model for Vietnamese Social Media Text Processing (EMNLP 2023 - Main)
**Disclaimer**: The paper contains actual comments on social networks that might be construed as abusive, offensive, or obscene.
ViSoBERT is the state-of-the-art language model for Vietnamese social media tasks:
- ViSoBERT is the first monolingual MLM ([XLM-R](https://github.com/facebookresearch/XLM#xlm-r-new-model) architecture) built specifically for Vietnamese social media texts.
- ViSoBERT outperforms previous monolingual, multilingual, and multilingual social media approaches, obtaining new state-of-the-art performances on four downstream Vietnamese social media tasks.
The general architecture and experimental results of ViSoBERT can be found in our [paper](https://arxiv.org/abs/2310.11166):
@inproceedings{nguyen-etal-2023-visobert,
title = "{V}i{S}o{BERT}: A Pre-Trained Language Model for {V}ietnamese Social Media Text Processing",
author = "Nguyen, Nam and
Phan, Thang and
Nguyen, Duc-Vu and
Nguyen, Kiet",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.315",
pages = "5191--5207",
abstract = "English and Chinese, known as resource-rich languages, have witnessed the strong development of transformer-based language models for natural language processing tasks. Although Vietnam has approximately 100M people speaking Vietnamese, several pre-trained models, e.g., PhoBERT, ViBERT, and vELECTRA, performed well on general Vietnamese NLP tasks, including POS tagging and named entity recognition. These pre-trained language models are still limited to Vietnamese social media tasks. In this paper, we present the first monolingual pre-trained language model for Vietnamese social media texts, ViSoBERT, which is pre-trained on a large-scale corpus of high-quality and diverse Vietnamese social media texts using XLM-R architecture. Moreover, we explored our pre-trained model on five important natural language downstream tasks on Vietnamese social media texts: emotion recognition, hate speech detection, sentiment analysis, spam reviews detection, and hate speech spans detection. Our experiments demonstrate that ViSoBERT, with far fewer parameters, surpasses the previous state-of-the-art models on multiple Vietnamese social media tasks. Our ViSoBERT model is available only for research purposes. Disclaimer: This paper contains actual comments on social networks that might be construed as abusive, offensive, or obscene.",
}
The pretraining dataset of our paper is available at: [Pretraining dataset](https://drive.google.com/drive/folders/1C144LOlkbH78m0-JoMckpRXubV7XT7Kb)
**Please CITE** our paper when ViSoBERT is used to help produce published results or is incorporated into other software.
**Installation**
Install `transformers` and `SentencePiece` packages:
pip install transformers
pip install SentencePiece
**Example usage**
```python
from transformers import AutoModel, AutoTokenizer
import torch
model= AutoModel.from_pretrained('uitnlp/visobert')
tokenizer = AutoTokenizer.from_pretrained('uitnlp/visobert')
encoding = tokenizer('hào quang rực rỡ', return_tensors='pt')
with torch.no_grad():
output = model(**encoding)
``` |