File size: 2,455 Bytes
df37816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d482ce
df37816
 
 
 
 
 
 
 
 
7d482ce
 
df37816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d482ce
 
df37816
 
7d482ce
df37816
 
 
 
 
 
 
 
 
7d482ce
 
 
 
 
 
 
 
 
 
df37816
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
library_name: transformers
license: apache-2.0
base_model: facebook/convnext-large-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: weeds24_convnext_balanced
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.94
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# weeds24_convnext_balanced

This model is a fine-tuned version of [facebook/convnext-large-224](https://huggingface.co/facebook/convnext-large-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1908
- Accuracy: 0.94

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 9.0308        | 1.0   | 75   | 2.0854          | 0.5067   |
| 4.0591        | 2.0   | 150  | 0.9363          | 0.8433   |
| 1.9789        | 3.0   | 225  | 0.5118          | 0.8867   |
| 1.3397        | 4.0   | 300  | 0.3700          | 0.9067   |
| 0.9292        | 5.0   | 375  | 0.2859          | 0.92     |
| 0.7772        | 6.0   | 450  | 0.2314          | 0.9233   |
| 0.8323        | 7.0   | 525  | 0.2472          | 0.9233   |
| 0.7398        | 8.0   | 600  | 0.2647          | 0.9233   |
| 0.6066        | 9.0   | 675  | 0.2107          | 0.9433   |
| 0.546         | 10.0  | 750  | 0.1908          | 0.94     |


### Framework versions

- Transformers 4.46.1
- Pytorch 2.5.0+cu124
- Datasets 3.0.2
- Tokenizers 0.20.1