File size: 6,682 Bytes
f387f75
d659ace
f387f75
 
 
 
 
 
 
 
 
 
 
 
8c47596
 
 
f387f75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3843846
f387f75
 
33f14ea
f387f75
 
 
 
 
 
 
 
 
33f14ea
f387f75
 
 
 
 
3843846
f387f75
 
33f14ea
f387f75
 
 
 
 
33f14ea
f387f75
 
 
 
33f14ea
f387f75
 
 
 
 
bfdf3f9
f387f75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c47596
 
 
 
 
 
 
f387f75
33f14ea
f387f75
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
language: zh
datasets: CLUECorpusSmall
widget: 
- text: "中国的首都是[MASK]京"


---


# Chinese ALBERT

## Model description

This is the set of Chinese ALBERT models pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). Besides, the models could also be pre-trained by [TencentPretrain](https://github.com/Tencent/TencentPretrain) introduced in [this paper](https://arxiv.org/abs/2212.06385), which inherits UER-py to support models with parameters above one billion, and extends it to a multimodal pre-training framework.

You can download the model either from the [UER-py Modelzoo page](https://github.com/dbiir/UER-py/wiki/Modelzoo), or via HuggingFace from the links below:

|          |           Link           |
| -------- | :-----------------------: |
| **ALBERT-Base**  | [**L=12/H=768 (Base)**][base] |
| **ALBERT-Large**  | [**L=24/H=1024 (Large)**][large] |

## How to use

You can use the model directly with a pipeline for text generation:

```python
>>> from transformers import BertTokenizer, AlbertForMaskedLM, FillMaskPipeline
>>> tokenizer = BertTokenizer.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
>>> model = AlbertForMaskedLM.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
>>> unmasker = FillMaskPipeline(model, tokenizer)   
>>> unmasker("中国的首都是[MASK]京。")
    [
        {'sequence': '中 国 的 首 都 是 北 京 。',
         'score': 0.8528032898902893, 
         'token': 1266, 
         'token_str': '北'}, 
        {'sequence': '中 国 的 首 都 是 南 京 。',
         'score': 0.07667620480060577, 
         'token': 1298, 
         'token_str': '南'}, 
        {'sequence': '中 国 的 首 都 是 东 京 。', 
         'score': 0.020440367981791496, 
         'token': 691, 
         'token_str': '东'},
        {'sequence': '中 国 的 首 都 是 维 京 。', 
         'score': 0.010197942145168781,
         'token': 5335, 
         'token_str': '维'}, 
        {'sequence': '中 国 的 首 都 是 汴 京 。', 
         'score': 0.0075391442514956, 
         'token': 3745, 
         'token_str': '汴'}
    ]

```

Here is how to use this model to get the features of a given text in PyTorch:

```python
from transformers import BertTokenizer, AlbertModel
tokenizer = BertTokenizer.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
model = AlbertModel.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```

and in TensorFlow:

```python
from transformers import BertTokenizer, TFAlbertModel
tokenizer = BertTokenizer.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
model = TFAlbertModel.from_pretrained("uer/albert-base-chinese-cluecorpussmall")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```

## Training data

[CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020/) is used as training data. 

## Training procedure

The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes.

Taking the case of ALBERT-Base

Stage1:

```
python3 preprocess.py --corpus_path corpora/cluecorpussmall_bert.txt \
                      --vocab_path models/google_zh_vocab.txt \
                      --dataset_path cluecorpussmall_albert_seq128_dataset.pt \
                      --seq_length 128 --processes_num 32 --data_processor albert 
```

```
python3 pretrain.py --dataset_path cluecorpussmall_albert_seq128_dataset.pt \
                    --vocab_path models/google_zh_vocab.txt \
                    --config_path models/albert/base_config.json \
                    --output_model_path models/cluecorpussmall_albert_base_seq128_model.bin \
                    --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
                    --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
                    --learning_rate 1e-4 --batch_size 64
```

Stage2:

```
python3 preprocess.py --corpus_path corpora/cluecorpussmall_bert.txt \
                      --vocab_path models/google_zh_vocab.txt \
                      --dataset_path cluecorpussmall_albert_seq512_dataset.pt \
                      --seq_length 512 --processes_num 32 --data_processor albert
```

```
python3 pretrain.py --dataset_path cluecorpussmall_albert_seq512_dataset.pt \
                    --vocab_path models/google_zh_vocab.txt \
                    --pretrained_model_path models/cluecorpussmall_albert_base_seq128_model.bin-1000000 \
                    --config_path models/albert/base_config.json \
                    --output_model_path models/cluecorpussmall_albert_base_seq512_model.bin \
                    --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
                    --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
                    --learning_rate 1e-4 --batch_size 64
```

Finally, we convert the pre-trained model into Huggingface's format:

```
python3 scripts/convert_albert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_albert_base_seq512_model.bin-1000000 \
                                                          --output_model_path pytorch_model.bin
```

### BibTeX entry and citation info

```
@article{lan2019albert,
  title={Albert: A lite bert for self-supervised learning of language representations},
  author={Lan, Zhenzhong and Chen, Mingda and Goodman, Sebastian and Gimpel, Kevin and Sharma, Piyush and Soricut, Radu},
  journal={arXiv preprint arXiv:1909.11942},
  year={2019}
}

@article{zhao2019uer,
  title={UER: An Open-Source Toolkit for Pre-training Models},
  author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
  journal={EMNLP-IJCNLP 2019},
  pages={241},
  year={2019}
}

@article{zhao2023tencentpretrain,
  title={TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities},
  author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others},
  journal={ACL 2023},
  pages={217},
  year={2023}
```

[base]:https://huggingface.co/uer/albert-base-chinese-cluecorpussmall
[large]:https://huggingface.co/uer/albert-large-chinese-cluecorpussmall