uboza10300
commited on
End of training
Browse files
README.md
CHANGED
@@ -26,16 +26,16 @@ model-index:
|
|
26 |
metrics:
|
27 |
- name: Accuracy
|
28 |
type: accuracy
|
29 |
-
value: 0.
|
30 |
- name: Precision
|
31 |
type: precision
|
32 |
-
value: 0.
|
33 |
- name: Recall
|
34 |
type: recall
|
35 |
-
value: 0.
|
36 |
- name: F1
|
37 |
type: f1
|
38 |
-
value: 0.
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
45 |
|
46 |
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the hatexplain dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
-
- Loss: 0.
|
49 |
-
- Accuracy: 0.
|
50 |
-
- Precision: 0.
|
51 |
-
- Recall: 0.
|
52 |
-
- F1: 0.
|
53 |
|
54 |
## Model description
|
55 |
|
@@ -68,7 +68,7 @@ More information needed
|
|
68 |
### Training hyperparameters
|
69 |
|
70 |
The following hyperparameters were used during training:
|
71 |
-
- learning_rate:
|
72 |
- train_batch_size: 16
|
73 |
- eval_batch_size: 16
|
74 |
- seed: 42
|
@@ -80,9 +80,9 @@ The following hyperparameters were used during training:
|
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
|
87 |
|
88 |
### Framework versions
|
|
|
26 |
metrics:
|
27 |
- name: Accuracy
|
28 |
type: accuracy
|
29 |
+
value: 0.6917879417879418
|
30 |
- name: Precision
|
31 |
type: precision
|
32 |
+
value: 0.6837783251259969
|
33 |
- name: Recall
|
34 |
type: recall
|
35 |
+
value: 0.6917879417879418
|
36 |
- name: F1
|
37 |
type: f1
|
38 |
+
value: 0.6822435740647693
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
45 |
|
46 |
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the hatexplain dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.7507
|
49 |
+
- Accuracy: 0.6918
|
50 |
+
- Precision: 0.6838
|
51 |
+
- Recall: 0.6918
|
52 |
+
- F1: 0.6822
|
53 |
|
54 |
## Model description
|
55 |
|
|
|
68 |
### Training hyperparameters
|
69 |
|
70 |
The following hyperparameters were used during training:
|
71 |
+
- learning_rate: 2e-05
|
72 |
- train_batch_size: 16
|
73 |
- eval_batch_size: 16
|
74 |
- seed: 42
|
|
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
83 |
+
| 0.7396 | 1.0 | 962 | 0.7567 | 0.6790 | 0.6713 | 0.6790 | 0.6641 |
|
84 |
+
| 0.6697 | 2.0 | 1924 | 0.7486 | 0.6842 | 0.6769 | 0.6842 | 0.6783 |
|
85 |
+
| 0.7573 | 3.0 | 2886 | 0.7685 | 0.6748 | 0.6658 | 0.6748 | 0.6656 |
|
86 |
|
87 |
|
88 |
### Framework versions
|