File size: 1,885 Bytes
9651c9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
base_model: allenai/led-base-16384
tags:
- generated_from_trainer
datasets:
- scientific_papers
model-index:
- name: allenai/led-base-16384
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# allenai/led-base-16384
This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the scientific_papers dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7667
- Rouge2 Precision: 0.15
- Rouge2 Recall: 0.0913
- Rouge2 Fmeasure: 0.1075
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
| 2.8931 | 0.32 | 10 | 2.9211 | 0.1243 | 0.1206 | 0.1119 |
| 3.0026 | 0.64 | 20 | 2.8150 | 0.1589 | 0.1102 | 0.1241 |
| 2.7651 | 0.96 | 30 | 2.7667 | 0.15 | 0.0913 | 0.1075 |
### Framework versions
- Transformers 4.36.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.15.0
|