Update README.md
Browse files
README.md
CHANGED
@@ -1,202 +1,124 @@
|
|
1 |
---
|
2 |
-
|
3 |
tags:
|
|
|
|
|
4 |
- unsloth
|
|
|
5 |
- trl
|
6 |
- grpo
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
[
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
[
|
117 |
-
|
118 |
-
#### Factors
|
119 |
-
|
120 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
121 |
-
|
122 |
-
[More Information Needed]
|
123 |
-
|
124 |
-
#### Metrics
|
125 |
-
|
126 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
127 |
-
|
128 |
-
[More Information Needed]
|
129 |
-
|
130 |
-
### Results
|
131 |
-
|
132 |
-
[More Information Needed]
|
133 |
-
|
134 |
-
#### Summary
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
## Model Examination [optional]
|
139 |
-
|
140 |
-
<!-- Relevant interpretability work for the model goes here -->
|
141 |
-
|
142 |
-
[More Information Needed]
|
143 |
-
|
144 |
-
## Environmental Impact
|
145 |
-
|
146 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
147 |
-
|
148 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
149 |
-
|
150 |
-
- **Hardware Type:** [More Information Needed]
|
151 |
-
- **Hours used:** [More Information Needed]
|
152 |
-
- **Cloud Provider:** [More Information Needed]
|
153 |
-
- **Compute Region:** [More Information Needed]
|
154 |
-
- **Carbon Emitted:** [More Information Needed]
|
155 |
-
|
156 |
-
## Technical Specifications [optional]
|
157 |
-
|
158 |
-
### Model Architecture and Objective
|
159 |
-
|
160 |
-
[More Information Needed]
|
161 |
-
|
162 |
-
### Compute Infrastructure
|
163 |
-
|
164 |
-
[More Information Needed]
|
165 |
-
|
166 |
-
#### Hardware
|
167 |
-
|
168 |
-
[More Information Needed]
|
169 |
-
|
170 |
-
#### Software
|
171 |
-
|
172 |
-
[More Information Needed]
|
173 |
-
|
174 |
-
## Citation [optional]
|
175 |
-
|
176 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
177 |
-
|
178 |
-
**BibTeX:**
|
179 |
-
|
180 |
-
[More Information Needed]
|
181 |
-
|
182 |
-
**APA:**
|
183 |
-
|
184 |
-
[More Information Needed]
|
185 |
-
|
186 |
-
## Glossary [optional]
|
187 |
-
|
188 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
189 |
-
|
190 |
-
[More Information Needed]
|
191 |
-
|
192 |
-
## More Information [optional]
|
193 |
-
|
194 |
-
[More Information Needed]
|
195 |
-
|
196 |
-
## Model Card Authors [optional]
|
197 |
-
|
198 |
-
[More Information Needed]
|
199 |
-
|
200 |
-
## Model Card Contact
|
201 |
-
|
202 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit
|
3 |
tags:
|
4 |
+
- text-generation-inference
|
5 |
+
- transformers
|
6 |
- unsloth
|
7 |
+
- qwen2
|
8 |
- trl
|
9 |
- grpo
|
10 |
+
license: apache-2.0
|
11 |
+
language:
|
12 |
+
- en
|
13 |
+
datasets:
|
14 |
+
- open-r1/OpenR1-Math-220k
|
15 |
---
|
16 |
|
17 |
+
This is my experiment with training a reasoning model using TRL's GRPO and Unsloth API.
|
18 |
+
|
19 |
+
# Inference:
|
20 |
+
## Using Unsloth API (For Faster Inference):
|
21 |
+
```
|
22 |
+
import torch
|
23 |
+
from unsloth import FastLanguageModel
|
24 |
+
from transformers import TextStreamer
|
25 |
+
|
26 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
27 |
+
model_name = "ubermenchh/Qwen2.5-3B-open-r1-math",
|
28 |
+
max_seq_length = 1024,
|
29 |
+
dtype = torch.bfloat16,
|
30 |
+
load_in_4bit = True,
|
31 |
+
)
|
32 |
+
FastLanguageModel.for_inference(model)
|
33 |
+
|
34 |
+
SYSTEM_PROMPT = """
|
35 |
+
Respond in the following format:
|
36 |
+
<think>
|
37 |
+
...
|
38 |
+
</think>
|
39 |
+
<answer>
|
40 |
+
...
|
41 |
+
</answer>
|
42 |
+
"""
|
43 |
+
|
44 |
+
test_question = """
|
45 |
+
Let $z \in \mathbf{C}$, satisfying the condition $a z^{n}+b \mathrm{i} z^{n-1}+b \mathrm{i} z-a=0, a, b \in \mathbf{R}, m \in$ $\mathbf{N}$, find $|z|$.
|
46 |
+
"""
|
47 |
+
|
48 |
+
messages = [
|
49 |
+
{"role": "system", "content": SYSTEM_PROMPT},
|
50 |
+
{"role": "user", "content": test_question},
|
51 |
+
]
|
52 |
+
input_ids = tokenizer.apply_chat_template(
|
53 |
+
messages,
|
54 |
+
add_generation_prompt = True,
|
55 |
+
return_tensors = "pt",
|
56 |
+
).to("cuda")
|
57 |
+
|
58 |
+
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
|
59 |
+
_ = model.generate(input_ids, streamer = text_streamer, max_new_tokens = 2048, pad_token_id = tokenizer.eos_token_id)
|
60 |
+
```
|
61 |
+
## Using Transformers API:
|
62 |
+
```
|
63 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
64 |
+
import torch
|
65 |
+
|
66 |
+
model = AutoModelForCausalLM.from_pretrained(
|
67 |
+
"ubermenchh/Qwen2.5-3B-open-r1-math",
|
68 |
+
torch_dtype=torch.bfloat16,
|
69 |
+
device_map="auto",
|
70 |
+
trust_remote_code=True
|
71 |
+
)
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
73 |
+
"ubermenchh/Qwen2.5-3B-open-r1-math",
|
74 |
+
trust_remote_code=True
|
75 |
+
)
|
76 |
+
|
77 |
+
SYSTEM_PROMPT = """
|
78 |
+
Respond in the following format:
|
79 |
+
<think>
|
80 |
+
...
|
81 |
+
</think>
|
82 |
+
<answer>
|
83 |
+
...
|
84 |
+
</answer>
|
85 |
+
"""
|
86 |
+
|
87 |
+
problem = "Let $z \in \mathbf{C}$, satisfying the condition $a z^{n}+b \mathrm{i} z^{n-1}+b \mathrm{i} z-a=0, a, b \in \mathbf{R}, m \in$ $\mathbf{N}$, find $|z|$."
|
88 |
+
prompt = [
|
89 |
+
{"role": "system", "content": SYSTEM_PROMPT},
|
90 |
+
{"role": "user", "content": problem}
|
91 |
+
]
|
92 |
+
|
93 |
+
input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
|
94 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
95 |
+
|
96 |
+
outputs = model.generate(
|
97 |
+
**inputs,
|
98 |
+
max_new_tokens=3000,
|
99 |
+
temperature=1.3,
|
100 |
+
num_return_sequences=1,
|
101 |
+
pad_token_id=tokenizer.pad_token_id,
|
102 |
+
eos_token_id=tokenizer.eos_token_id
|
103 |
+
)
|
104 |
+
|
105 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
106 |
+
|
107 |
+
print("Question:\n", problem)
|
108 |
+
print("\n\nResponse:\n", response)
|
109 |
+
```
|
110 |
+
|
111 |
+
## References:
|
112 |
+
- [https://github.com/HarleyCoops/smolThinker-.5B](https://github.com/HarleyCoops/smolThinker-.5B)
|
113 |
+
- [https://gist.github.com/willccbb/4676755236bb08cab5f4e54a0475d6fb](https://gist.github.com/willccbb/4676755236bb08cab5f4e54a0475d6fb)
|
114 |
+
- [https://github.com/huggingface/open-r1](https://github.com/huggingface/open-r1)
|
115 |
+
|
116 |
+
# Uploaded model
|
117 |
+
|
118 |
+
- **Developed by:** ubermenchh
|
119 |
+
- **License:** apache-2.0
|
120 |
+
- **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit
|
121 |
+
|
122 |
+
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
123 |
+
|
124 |
+
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|