File size: 2,136 Bytes
5c80504
6f9a4d2
5c80504
 
 
 
 
6f9a4d2
 
 
5c80504
7a9fd49
71c1350
 
5c80504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f9a4d2
 
5c80504
f3891bd
6f9a4d2
f3891bd
5c80504
 
08b6570
 
 
5c80504
 
 
 
 
 
 
 
 
 
 
 
 
 
6f9a4d2
 
 
 
 
ef8fd92
6f9a4d2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
language:
- multilingual
---
---
You can read more about the importance and practical use of this model in this article: [Mental Health Monitor](https://medium.com/@uaritm/mental-health-monitor-b90f0b2ee7f6) 


# test_depres

This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Usage

To use this model for inference, first install the SetFit library:

```bash
python -m pip install setfit
```

You can then run inference as follows:

```python
from setfit import SetFitModel

# Download from Hub and run inference
model = SetFitModel.from_pretrained("test_depres")

dict ={0:"positive", 1:"negative"}
# Run inference

preds = model(["What happened to me? I don't know what to do, where to go! Can anyone help me?"])
print(dict.get(preds.numpy()[0]))
```

```
Warning: This model cannot be used for medical diagnosis and is not a substitute for a physician!
```
## BibTeX entry and citation info

```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
## Citing & Authors
```
@misc{Uaritm,
      title={SetFit: Classification of medical texts}, 
      author={Vitaliy Ostashko},
      year={2023},
      url={https://esemi.org}
}

<!--- Describe where people can find more information -->