Model save
Browse files
README.md
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
base_model: meta-llama/Llama-2-7b-hf
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: squad_qa_no_id_v5_full_meta-llama_Llama-2-7b-hf_1e-4_lora
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# squad_qa_no_id_v5_full_meta-llama_Llama-2-7b-hf_1e-4_lora
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 2.9829
|
21 |
+
- Accuracy: 0.6116
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0001
|
41 |
+
- train_batch_size: 1
|
42 |
+
- eval_batch_size: 2
|
43 |
+
- seed: 42
|
44 |
+
- distributed_type: multi-GPU
|
45 |
+
- num_devices: 4
|
46 |
+
- gradient_accumulation_steps: 8
|
47 |
+
- total_train_batch_size: 32
|
48 |
+
- total_eval_batch_size: 8
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: constant
|
51 |
+
- lr_scheduler_warmup_ratio: 0.05
|
52 |
+
- num_epochs: 50.0
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
58 |
+
| 1.6368 | 1.0 | 158 | 1.6276 | 0.624 |
|
59 |
+
| 1.0335 | 2.0 | 317 | 1.6646 | 0.6236 |
|
60 |
+
| 0.7775 | 3.0 | 475 | 1.7627 | 0.6207 |
|
61 |
+
| 0.49 | 4.0 | 634 | 1.9259 | 0.6165 |
|
62 |
+
| 0.3885 | 5.0 | 792 | 2.0775 | 0.6135 |
|
63 |
+
| 0.2821 | 6.0 | 951 | 2.2256 | 0.6115 |
|
64 |
+
| 0.2484 | 7.0 | 1109 | 2.3241 | 0.6106 |
|
65 |
+
| 0.2254 | 8.0 | 1268 | 2.3944 | 0.6104 |
|
66 |
+
| 0.217 | 9.0 | 1426 | 2.5084 | 0.6102 |
|
67 |
+
| 0.2063 | 10.0 | 1585 | 2.5607 | 0.6095 |
|
68 |
+
| 0.2004 | 11.0 | 1743 | 2.6099 | 0.6084 |
|
69 |
+
| 0.2001 | 12.0 | 1902 | 2.6986 | 0.6072 |
|
70 |
+
| 0.1887 | 13.0 | 2060 | 2.7109 | 0.6086 |
|
71 |
+
| 0.198 | 14.0 | 2219 | 2.6802 | 0.6098 |
|
72 |
+
| 0.1898 | 15.0 | 2377 | 2.6273 | 0.6088 |
|
73 |
+
| 0.1956 | 16.0 | 2536 | 2.7269 | 0.6092 |
|
74 |
+
| 0.1857 | 17.0 | 2694 | 2.6266 | 0.6112 |
|
75 |
+
| 0.1879 | 18.0 | 2853 | 2.6884 | 0.6095 |
|
76 |
+
| 0.1927 | 19.0 | 3011 | 2.6882 | 0.6104 |
|
77 |
+
| 0.1829 | 20.0 | 3170 | 2.6503 | 0.6105 |
|
78 |
+
| 0.1902 | 21.0 | 3328 | 2.7196 | 0.6096 |
|
79 |
+
| 0.187 | 22.0 | 3487 | 2.5676 | 0.6096 |
|
80 |
+
| 0.1832 | 23.0 | 3645 | 2.7033 | 0.6087 |
|
81 |
+
| 0.1925 | 24.0 | 3804 | 2.7632 | 0.6076 |
|
82 |
+
| 0.1812 | 25.0 | 3962 | 2.8529 | 0.6066 |
|
83 |
+
| 0.1862 | 26.0 | 4121 | 2.7649 | 0.6078 |
|
84 |
+
| 0.1841 | 27.0 | 4279 | 2.7719 | 0.6101 |
|
85 |
+
| 0.1835 | 28.0 | 4438 | 2.8693 | 0.6087 |
|
86 |
+
| 0.1807 | 29.0 | 4596 | 2.9207 | 0.6081 |
|
87 |
+
| 0.1773 | 30.0 | 4755 | 2.9250 | 0.6078 |
|
88 |
+
| 0.1808 | 31.0 | 4913 | 3.0189 | 0.6090 |
|
89 |
+
| 0.1775 | 32.0 | 5072 | 3.0751 | 0.6085 |
|
90 |
+
| 0.1775 | 33.0 | 5230 | 3.0890 | 0.6076 |
|
91 |
+
| 0.1802 | 34.0 | 5389 | 3.1098 | 0.608 |
|
92 |
+
| 0.1794 | 35.0 | 5547 | 3.0633 | 0.6092 |
|
93 |
+
| 0.1798 | 36.0 | 5706 | 3.2008 | 0.6068 |
|
94 |
+
| 0.1764 | 37.0 | 5864 | 3.1595 | 0.6084 |
|
95 |
+
| 0.1794 | 38.0 | 6023 | 2.7637 | 0.6092 |
|
96 |
+
| 0.1938 | 39.0 | 6181 | 2.6485 | 0.6093 |
|
97 |
+
| 0.1898 | 40.0 | 6340 | 2.7094 | 0.6082 |
|
98 |
+
| 0.1912 | 41.0 | 6498 | 2.6494 | 0.6113 |
|
99 |
+
| 0.1839 | 42.0 | 6657 | 2.7422 | 0.6103 |
|
100 |
+
| 0.1815 | 43.0 | 6815 | 2.7747 | 0.6102 |
|
101 |
+
| 0.1725 | 44.0 | 6974 | 2.8100 | 0.6104 |
|
102 |
+
| 0.1754 | 45.0 | 7132 | 2.9507 | 0.6105 |
|
103 |
+
| 0.1745 | 46.0 | 7291 | 2.9690 | 0.6107 |
|
104 |
+
| 0.1758 | 47.0 | 7449 | 2.9188 | 0.6113 |
|
105 |
+
| 0.1793 | 48.0 | 7608 | 2.8621 | 0.6125 |
|
106 |
+
| 0.1729 | 49.0 | 7766 | 2.9604 | 0.6126 |
|
107 |
+
| 0.1793 | 49.84 | 7900 | 2.9829 | 0.6116 |
|
108 |
+
|
109 |
+
|
110 |
+
### Framework versions
|
111 |
+
|
112 |
+
- Transformers 4.34.0
|
113 |
+
- Pytorch 2.1.0+cu121
|
114 |
+
- Datasets 2.18.0
|
115 |
+
- Tokenizers 0.14.1
|