tyzhu commited on
Commit
2e4540a
·
verified ·
1 Parent(s): ca2e8e9

Model save

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ base_model: meta-llama/Llama-2-7b-hf
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: lmind_hotpot_train8000_eval7405_v1_qa_5e-5_lora2
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # lmind_hotpot_train8000_eval7405_v1_qa_5e-5_lora2
17
+
18
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 3.2298
21
+ - Accuracy: 0.5839
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 2
42
+ - eval_batch_size: 2
43
+ - seed: 42
44
+ - distributed_type: multi-GPU
45
+ - num_devices: 4
46
+ - gradient_accumulation_steps: 4
47
+ - total_train_batch_size: 32
48
+ - total_eval_batch_size: 8
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: constant
51
+ - lr_scheduler_warmup_ratio: 0.05
52
+ - num_epochs: 20.0
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
58
+ | 1.798 | 1.0 | 250 | 1.8213 | 0.6067 |
59
+ | 1.7 | 2.0 | 500 | 1.8046 | 0.6077 |
60
+ | 1.5869 | 3.0 | 750 | 1.8293 | 0.6071 |
61
+ | 1.4349 | 4.0 | 1000 | 1.8974 | 0.6043 |
62
+ | 1.3111 | 5.0 | 1250 | 1.9769 | 0.6015 |
63
+ | 1.197 | 6.0 | 1500 | 2.0635 | 0.5992 |
64
+ | 1.0729 | 7.0 | 1750 | 2.1523 | 0.5975 |
65
+ | 0.9833 | 8.0 | 2000 | 2.2640 | 0.5947 |
66
+ | 0.8672 | 9.0 | 2250 | 2.3643 | 0.5924 |
67
+ | 0.7883 | 10.0 | 2500 | 2.4598 | 0.5908 |
68
+ | 0.6879 | 11.0 | 2750 | 2.5669 | 0.5890 |
69
+ | 0.6295 | 12.0 | 3000 | 2.7000 | 0.5885 |
70
+ | 0.5545 | 13.0 | 3250 | 2.8281 | 0.5851 |
71
+ | 0.5208 | 14.0 | 3500 | 2.8794 | 0.5853 |
72
+ | 0.4679 | 15.0 | 3750 | 2.9184 | 0.5863 |
73
+ | 0.4464 | 16.0 | 4000 | 3.0791 | 0.5852 |
74
+ | 0.4136 | 17.0 | 4250 | 3.0832 | 0.5856 |
75
+ | 0.4021 | 18.0 | 4500 | 3.0944 | 0.5847 |
76
+ | 0.3776 | 19.0 | 4750 | 3.2120 | 0.5828 |
77
+ | 0.373 | 20.0 | 5000 | 3.2298 | 0.5839 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.34.0
83
+ - Pytorch 2.1.0+cu121
84
+ - Datasets 2.18.0
85
+ - Tokenizers 0.14.1