Model save
Browse files
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
base_model: meta-llama/Llama-2-7b-hf
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: lmind_hotpot_train8000_eval7405_v1_qa_5e-5_lora2
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# lmind_hotpot_train8000_eval7405_v1_qa_5e-5_lora2
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 3.2298
|
21 |
+
- Accuracy: 0.5839
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 2
|
42 |
+
- eval_batch_size: 2
|
43 |
+
- seed: 42
|
44 |
+
- distributed_type: multi-GPU
|
45 |
+
- num_devices: 4
|
46 |
+
- gradient_accumulation_steps: 4
|
47 |
+
- total_train_batch_size: 32
|
48 |
+
- total_eval_batch_size: 8
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: constant
|
51 |
+
- lr_scheduler_warmup_ratio: 0.05
|
52 |
+
- num_epochs: 20.0
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
58 |
+
| 1.798 | 1.0 | 250 | 1.8213 | 0.6067 |
|
59 |
+
| 1.7 | 2.0 | 500 | 1.8046 | 0.6077 |
|
60 |
+
| 1.5869 | 3.0 | 750 | 1.8293 | 0.6071 |
|
61 |
+
| 1.4349 | 4.0 | 1000 | 1.8974 | 0.6043 |
|
62 |
+
| 1.3111 | 5.0 | 1250 | 1.9769 | 0.6015 |
|
63 |
+
| 1.197 | 6.0 | 1500 | 2.0635 | 0.5992 |
|
64 |
+
| 1.0729 | 7.0 | 1750 | 2.1523 | 0.5975 |
|
65 |
+
| 0.9833 | 8.0 | 2000 | 2.2640 | 0.5947 |
|
66 |
+
| 0.8672 | 9.0 | 2250 | 2.3643 | 0.5924 |
|
67 |
+
| 0.7883 | 10.0 | 2500 | 2.4598 | 0.5908 |
|
68 |
+
| 0.6879 | 11.0 | 2750 | 2.5669 | 0.5890 |
|
69 |
+
| 0.6295 | 12.0 | 3000 | 2.7000 | 0.5885 |
|
70 |
+
| 0.5545 | 13.0 | 3250 | 2.8281 | 0.5851 |
|
71 |
+
| 0.5208 | 14.0 | 3500 | 2.8794 | 0.5853 |
|
72 |
+
| 0.4679 | 15.0 | 3750 | 2.9184 | 0.5863 |
|
73 |
+
| 0.4464 | 16.0 | 4000 | 3.0791 | 0.5852 |
|
74 |
+
| 0.4136 | 17.0 | 4250 | 3.0832 | 0.5856 |
|
75 |
+
| 0.4021 | 18.0 | 4500 | 3.0944 | 0.5847 |
|
76 |
+
| 0.3776 | 19.0 | 4750 | 3.2120 | 0.5828 |
|
77 |
+
| 0.373 | 20.0 | 5000 | 3.2298 | 0.5839 |
|
78 |
+
|
79 |
+
|
80 |
+
### Framework versions
|
81 |
+
|
82 |
+
- Transformers 4.34.0
|
83 |
+
- Pytorch 2.1.0+cu121
|
84 |
+
- Datasets 2.18.0
|
85 |
+
- Tokenizers 0.14.1
|