Model save
Browse files
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
base_model: meta-llama/Llama-2-7b-hf
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: lmind_hotpot_train8000_eval7405_v1_docidx_meta-llama_Llama-2-7b-hf_5e-5_lora2
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# lmind_hotpot_train8000_eval7405_v1_docidx_meta-llama_Llama-2-7b-hf_5e-5_lora2
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.7747
|
21 |
+
- Accuracy: 0.7938
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 2
|
42 |
+
- eval_batch_size: 2
|
43 |
+
- seed: 42
|
44 |
+
- distributed_type: multi-GPU
|
45 |
+
- num_devices: 4
|
46 |
+
- gradient_accumulation_steps: 4
|
47 |
+
- total_train_batch_size: 32
|
48 |
+
- total_eval_batch_size: 8
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: constant
|
51 |
+
- lr_scheduler_warmup_ratio: 0.05
|
52 |
+
- num_epochs: 20.0
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
57 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
58 |
+
| 1.1109 | 1.0 | 839 | 1.3437 | 0.7529 |
|
59 |
+
| 1.0723 | 2.0 | 1678 | 1.2988 | 0.7550 |
|
60 |
+
| 1.0453 | 3.0 | 2517 | 1.2332 | 0.7577 |
|
61 |
+
| 1.0099 | 4.0 | 3357 | 1.2146 | 0.7604 |
|
62 |
+
| 0.9553 | 5.0 | 4196 | 1.1671 | 0.7632 |
|
63 |
+
| 0.8876 | 6.0 | 5035 | 1.1263 | 0.7655 |
|
64 |
+
| 0.8352 | 7.0 | 5874 | 1.0776 | 0.7681 |
|
65 |
+
| 0.7872 | 8.0 | 6714 | 1.0745 | 0.7706 |
|
66 |
+
| 0.7297 | 9.0 | 7553 | 1.0479 | 0.7730 |
|
67 |
+
| 0.6831 | 10.0 | 8392 | 1.0078 | 0.7754 |
|
68 |
+
| 0.6397 | 11.0 | 9231 | 0.9763 | 0.7779 |
|
69 |
+
| 0.5885 | 12.0 | 10071 | 0.9702 | 0.7803 |
|
70 |
+
| 0.5379 | 13.0 | 10910 | 0.9445 | 0.7824 |
|
71 |
+
| 0.4996 | 14.0 | 11749 | 0.9087 | 0.7846 |
|
72 |
+
| 0.464 | 15.0 | 12588 | 0.8827 | 0.7866 |
|
73 |
+
| 0.4225 | 16.0 | 13428 | 0.8886 | 0.7881 |
|
74 |
+
| 0.4259 | 17.0 | 14267 | 0.8224 | 0.7898 |
|
75 |
+
| 0.361 | 18.0 | 15106 | 0.7985 | 0.7913 |
|
76 |
+
| 0.3429 | 19.0 | 15945 | 0.7804 | 0.7930 |
|
77 |
+
| 0.305 | 19.99 | 16780 | 0.7747 | 0.7938 |
|
78 |
+
|
79 |
+
|
80 |
+
### Framework versions
|
81 |
+
|
82 |
+
- Transformers 4.34.0
|
83 |
+
- Pytorch 2.1.0+cu121
|
84 |
+
- Datasets 2.18.0
|
85 |
+
- Tokenizers 0.14.1
|