tyfeng1997 commited on
Commit
ee011f4
·
verified ·
1 Parent(s): c8c04b1
Files changed (1) hide show
  1. README.md +61 -1
README.md CHANGED
@@ -58,4 +58,64 @@ The following hyperparameters were used during training:
58
  - Transformers 4.40.0
59
  - Pytorch 2.2.0+cu121
60
  - Datasets 2.19.0
61
- - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  - Transformers 4.40.0
59
  - Pytorch 2.2.0+cu121
60
  - Datasets 2.19.0
61
+ - Tokenizers 0.19.1
62
+
63
+
64
+
65
+ ### Usage
66
+
67
+ ```python
68
+
69
+ from transformers import AutoTokenizer, AutoModelForCausalLM
70
+ import torch
71
+
72
+ model_id = "tyfeng1997/llama3-8b-instruct-text-to-sql"
73
+
74
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
75
+
76
+ model = AutoModelForCausalLM.from_pretrained(
77
+ model_id,
78
+ torch_dtype=torch.bfloat16,
79
+ device_map="auto",
80
+ )
81
+
82
+
83
+ messages = [
84
+ {"role": "system", "content": "You are an text to SQL query translator. Users will ask you questions in English and you will generate a SQL query based on the provided SCHEMA.\nSCHEMA:\nCREATE TABLE match_season (College VARCHAR, POSITION VARCHAR)"},
85
+ {"role": "user", "content": "Which college have both players with position midfielder and players with position defender?"},
86
+ ]
87
+
88
+ input_ids = tokenizer.apply_chat_template(
89
+ messages,
90
+ add_generation_prompt=True,
91
+ return_tensors="pt"
92
+ ).to(model.device)
93
+
94
+ terminators = [
95
+ tokenizer.eos_token_id,
96
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
97
+ ]
98
+
99
+ outputs = model.generate(
100
+ input_ids,
101
+ max_new_tokens=256,
102
+ eos_token_id=terminators,
103
+ do_sample=True,
104
+ temperature=0.6,
105
+ top_p=0.9,
106
+ )
107
+ response = outputs[0]
108
+ print(tokenizer.decode(response, skip_special_tokens=True))
109
+
110
+ #
111
+ #system
112
+ #You are an text to SQL query translator. Users will ask you questions in English and you will generate a SQL query based on the provided SCHEMA.
113
+ #SCHEMA:
114
+ #CREATE TABLE match_season (College VARCHAR, POSITION VARCHAR)
115
+ #user
116
+ #Which college have both players with position midfielder and players with position defender?
117
+ #assistant
118
+ #SELECT College FROM match_season WHERE POSITION = "Midfielder" INTERSECT SELECT College FROM match_season WHERE POSITION = "Defender"
119
+ #
120
+ ```
121
+