|
import random |
|
from os import environ |
|
|
|
import numpy as np |
|
import torch |
|
|
|
|
|
JPEG_QUALITY = 100 |
|
|
|
|
|
def seed_everything(seed): |
|
random.seed(seed) |
|
environ["PYTHONHASHSEED"] = str(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
|
|
|
|
def exists(x): |
|
return x is not None |
|
|
|
|
|
def get(x, default): |
|
if exists(x): |
|
return x |
|
return default |
|
|
|
|
|
def get_self_recurrence_schedule(schedule, num_inference_steps): |
|
self_recurrence_schedule = [0] * num_inference_steps |
|
for schedule_current in reversed(schedule): |
|
if schedule_current is None or len(schedule_current) == 0: |
|
continue |
|
[start, end, repeat] = schedule_current |
|
start_i = round(num_inference_steps * start) |
|
end_i = round(num_inference_steps * end) |
|
for i in range(start_i, end_i): |
|
self_recurrence_schedule[i] = repeat |
|
return self_recurrence_schedule |
|
|
|
|
|
def batch_dict_to_tensor(batch_dict, batch_order): |
|
batch_tensor = [] |
|
for batch_type in batch_order: |
|
batch_tensor.append(batch_dict[batch_type]) |
|
batch_tensor = torch.cat(batch_tensor, dim=0) |
|
return batch_tensor |
|
|
|
|
|
def batch_tensor_to_dict(batch_tensor, batch_order): |
|
batch_tensor_chunk = batch_tensor.chunk(len(batch_order)) |
|
batch_dict = {} |
|
for i, batch_type in enumerate(batch_order): |
|
batch_dict[batch_type] = batch_tensor_chunk[i] |
|
return batch_dict |
|
|
|
|
|
def noise_prev(scheduler, timestep, x_0, noise=None): |
|
if scheduler.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
if noise is None: |
|
noise = torch.randn_like(x_0).to(x_0) |
|
|
|
|
|
timestep_i = (scheduler.timesteps == timestep).nonzero(as_tuple=True)[0][0].item() |
|
if timestep_i + 1 >= scheduler.timesteps.shape[0]: |
|
return x_0 |
|
prev_timestep = scheduler.timesteps[timestep_i + 1:timestep_i + 2] |
|
|
|
x_t_prev = scheduler.add_noise(x_0, noise, prev_timestep) |
|
return x_t_prev |
|
|
|
|
|
def noise_t2t(scheduler, timestep, timestep_target, x_t, noise=None): |
|
assert timestep_target >= timestep |
|
if noise is None: |
|
noise = torch.randn_like(x_t).to(x_t) |
|
|
|
alphas_cumprod = scheduler.alphas_cumprod.to(device=x_t.device, dtype=x_t.dtype) |
|
|
|
timestep = timestep.to(torch.long) |
|
timestep_target = timestep_target.to(torch.long) |
|
|
|
alpha_prod_t = alphas_cumprod[timestep] |
|
alpha_prod_tt = alphas_cumprod[timestep_target] |
|
alpha_prod = alpha_prod_tt / alpha_prod_t |
|
|
|
sqrt_alpha_prod = (alpha_prod ** 0.5).flatten() |
|
while len(sqrt_alpha_prod.shape) < len(x_t.shape): |
|
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) |
|
|
|
sqrt_one_minus_alpha_prod = ((1 - alpha_prod) ** 0.5).flatten() |
|
while len(sqrt_one_minus_alpha_prod.shape) < len(x_t.shape): |
|
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) |
|
|
|
x_tt = sqrt_alpha_prod * x_t + sqrt_one_minus_alpha_prod * noise |
|
return x_tt |
|
|