File size: 13,363 Bytes
5c31d1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
from types import MethodType
from typing import Optional

from diffusers.models.attention_processor import Attention
import torch
import torch.nn.functional as F

from .feature import *
from .utils import *


def get_control_config(structure_schedule, appearance_schedule):
    s = structure_schedule
    a = appearance_schedule
    
    control_config =\
f"""control_schedule:
    #       structure_conv   structure_attn   appearance_attn  conv/attn
    encoder:                                                # (num layers)
        0: [[             ], [             ], [             ]]  # 2/0
        1: [[             ], [             ], [{a}, {a}     ]]  # 2/2
        2: [[             ], [             ], [{a}, {a}     ]]  # 2/2
    middle: [[            ], [             ], [             ]]  # 2/1
    decoder:
        0: [[{s}          ], [{s}, {s}, {s}], [0.0, {a}, {a}]]  # 3/3
        1: [[             ], [             ], [{a}, {a}     ]]  # 3/3
        2: [[             ], [             ], [             ]]  # 3/0

control_target:
    - [output_tensor]  # structure_conv   choices: {{hidden_states, output_tensor}}
    - [query, key]     # structure_attn   choices: {{query, key, value}}
    - [before]         # appearance_attn  choices: {{before, value, after}}

self_recurrence_schedule:
    - [0.1, 0.5, 2]  # format: [start, end, num_recurrence]"""
    
    return control_config


def convolution_forward(  # From <class 'diffusers.models.resnet.ResnetBlock2D'>, forward (diffusers==0.28.0)
    self,
    input_tensor: torch.Tensor,
    temb: torch.Tensor,
    *args,
    **kwargs,
) -> torch.Tensor:
    do_structure_control = self.do_control and self.t in self.structure_schedule
    
    hidden_states = input_tensor

    hidden_states = self.norm1(hidden_states)
    hidden_states = self.nonlinearity(hidden_states)

    if self.upsample is not None:
        # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
        if hidden_states.shape[0] >= 64:
            input_tensor = input_tensor.contiguous()
            hidden_states = hidden_states.contiguous()
        input_tensor = self.upsample(input_tensor)
        hidden_states = self.upsample(hidden_states)
    elif self.downsample is not None:
        input_tensor = self.downsample(input_tensor)
        hidden_states = self.downsample(hidden_states)

    hidden_states = self.conv1(hidden_states)

    if self.time_emb_proj is not None:
        if not self.skip_time_act:
            temb = self.nonlinearity(temb)
        temb = self.time_emb_proj(temb)[:, :, None, None]

    if self.time_embedding_norm == "default":
        if temb is not None:
            hidden_states = hidden_states + temb
        hidden_states = self.norm2(hidden_states)
    elif self.time_embedding_norm == "scale_shift":
        if temb is None:
            raise ValueError(
                f" `temb` should not be None when `time_embedding_norm` is {self.time_embedding_norm}"
            )
        time_scale, time_shift = torch.chunk(temb, 2, dim=1)
        hidden_states = self.norm2(hidden_states)
        hidden_states = hidden_states * (1 + time_scale) + time_shift
    else:
        hidden_states = self.norm2(hidden_states)

    hidden_states = self.nonlinearity(hidden_states)

    hidden_states = self.dropout(hidden_states)
    hidden_states = self.conv2(hidden_states)
    
    # Feature injection and AdaIN (hidden_states)
    if do_structure_control and "hidden_states" in self.structure_target:
        hidden_states = feature_injection(hidden_states, batch_order=self.batch_order)

    if self.conv_shortcut is not None:
        input_tensor = self.conv_shortcut(input_tensor)

    output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
    
    # Feature injection and AdaIN (output_tensor)
    if do_structure_control and "output_tensor" in self.structure_target:
        output_tensor = feature_injection(output_tensor, batch_order=self.batch_order)

    return output_tensor


class AttnProcessor2_0:  # From <class 'diffusers.models.attention_processor.AttnProcessor2_0'> (diffusers==0.28.0)

    def __init__(self):
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
        *args,
        **kwargs,
    ) -> torch.FloatTensor:
        do_structure_control = attn.do_control and attn.t in attn.structure_schedule
        do_appearance_control = attn.do_control and attn.t in attn.appearance_schedule
        
        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
        
        no_encoder_hidden_states = encoder_hidden_states is None
        if no_encoder_hidden_states:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
        
        if do_appearance_control:  # Assume we only have this for self attention
            hidden_states_normed = normalize(hidden_states, dim=-2)  # B H D C
            encoder_hidden_states_normed = normalize(encoder_hidden_states, dim=-2)
            
            query_normed = attn.to_q(hidden_states_normed)
            key_normed = attn.to_k(encoder_hidden_states_normed)
            
            inner_dim = key_normed.shape[-1]
            head_dim = inner_dim // attn.heads
            query_normed = query_normed.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            key_normed = key_normed.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            
            # Match query and key injection with structure injection (if injection is happening this layer)
            if do_structure_control:
                if "query" in attn.structure_target: 
                    query_normed = feature_injection(query_normed, batch_order=attn.batch_order)
                if "key" in attn.structure_target:
                    key_normed = feature_injection(key_normed, batch_order=attn.batch_order)
        
        # Appearance transfer (before)
        if do_appearance_control and "before" in attn.appearance_target:
            hidden_states = hidden_states.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            hidden_states = appearance_transfer(hidden_states, query_normed, key_normed, batch_order=attn.batch_order)
            hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
            
            if no_encoder_hidden_states:
                encoder_hidden_states = hidden_states
            elif attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
        
        query = attn.to_q(hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        
        # Feature injection (query, key, and/or value)
        if do_structure_control:
            if "query" in attn.structure_target: 
                query = feature_injection(query, batch_order=attn.batch_order)
            if "key" in attn.structure_target:
                key = feature_injection(key, batch_order=attn.batch_order)
            if "value" in attn.structure_target:
                value = feature_injection(value, batch_order=attn.batch_order)
        
        # Appearance transfer (value)
        if do_appearance_control and "value" in attn.appearance_target:
            value = appearance_transfer(value, query_normed, key_normed, batch_order=attn.batch_order)

        # The output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )
        
        # Appearance transfer (after)
        if do_appearance_control and "after" in attn.appearance_target:
            hidden_states = appearance_transfer(hidden_states, query_normed, key_normed, batch_order=attn.batch_order)

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # Linear projection
        hidden_states = attn.to_out[0](hidden_states, *args)
        # Dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states
    

def register_control(
    model,
    timesteps,
    control_schedule,  # structure_conv, structure_attn, appearance_attn
    control_target = [["output_tensor"], ["query", "key"], ["before"]],
):  
    # Assume timesteps in reverse order (T -> 0)
    for block_type in ["encoder", "decoder", "middle"]:
        blocks = {
            "encoder": model.unet.down_blocks,
            "decoder": model.unet.up_blocks,
            "middle": [model.unet.mid_block],
        }[block_type]
        
        control_schedule_block = control_schedule[block_type]
        if block_type == "middle":
            control_schedule_block = [control_schedule_block]
        
        for layer in range(len(control_schedule_block)):
            # Convolution
            num_blocks = len(blocks[layer].resnets) if hasattr(blocks[layer], "resnets") else 0
            for block in range(num_blocks):
                convolution = blocks[layer].resnets[block]
                convolution.structure_target = control_target[0]
                convolution.structure_schedule = get_schedule(
                    timesteps, get_elem(control_schedule_block[layer][0], block)
                )
                convolution.forward = MethodType(convolution_forward, convolution)
        
            # Self-attention
            num_blocks = len(blocks[layer].attentions) if hasattr(blocks[layer], "attentions") else 0
            for block in range(num_blocks):
                for transformer_block in blocks[layer].attentions[block].transformer_blocks:
                    attention = transformer_block.attn1
                    attention.structure_target = control_target[1]
                    attention.structure_schedule = get_schedule(
                        timesteps, get_elem(control_schedule_block[layer][1], block)
                    )
                    attention.appearance_target = control_target[2]
                    attention.appearance_schedule = get_schedule(
                        timesteps, get_elem(control_schedule_block[layer][2], block)
                    )
                    attention.processor = AttnProcessor2_0()
                    
                    
def register_attr(model, t, do_control, batch_order):
    for layer_type in ["encoder", "decoder", "middle"]:
        blocks = {"encoder": model.unet.down_blocks, "decoder": model.unet.up_blocks,
                  "middle": [model.unet.mid_block]}[layer_type]
        for layer in blocks:
            # Convolution
            for module in layer.resnets:
                module.t = t
                module.do_control = do_control
                module.batch_order = batch_order
            # Self-attention
            if hasattr(layer, "attentions"):
                for block in layer.attentions:
                    for module in block.transformer_blocks:
                        module.attn1.t = t
                        module.attn1.do_control = do_control
                        module.attn1.batch_order = batch_order