File size: 13,363 Bytes
5c31d1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
from types import MethodType
from typing import Optional
from diffusers.models.attention_processor import Attention
import torch
import torch.nn.functional as F
from .feature import *
from .utils import *
def get_control_config(structure_schedule, appearance_schedule):
s = structure_schedule
a = appearance_schedule
control_config =\
f"""control_schedule:
# structure_conv structure_attn appearance_attn conv/attn
encoder: # (num layers)
0: [[ ], [ ], [ ]] # 2/0
1: [[ ], [ ], [{a}, {a} ]] # 2/2
2: [[ ], [ ], [{a}, {a} ]] # 2/2
middle: [[ ], [ ], [ ]] # 2/1
decoder:
0: [[{s} ], [{s}, {s}, {s}], [0.0, {a}, {a}]] # 3/3
1: [[ ], [ ], [{a}, {a} ]] # 3/3
2: [[ ], [ ], [ ]] # 3/0
control_target:
- [output_tensor] # structure_conv choices: {{hidden_states, output_tensor}}
- [query, key] # structure_attn choices: {{query, key, value}}
- [before] # appearance_attn choices: {{before, value, after}}
self_recurrence_schedule:
- [0.1, 0.5, 2] # format: [start, end, num_recurrence]"""
return control_config
def convolution_forward( # From <class 'diffusers.models.resnet.ResnetBlock2D'>, forward (diffusers==0.28.0)
self,
input_tensor: torch.Tensor,
temb: torch.Tensor,
*args,
**kwargs,
) -> torch.Tensor:
do_structure_control = self.do_control and self.t in self.structure_schedule
hidden_states = input_tensor
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
if self.upsample is not None:
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
if hidden_states.shape[0] >= 64:
input_tensor = input_tensor.contiguous()
hidden_states = hidden_states.contiguous()
input_tensor = self.upsample(input_tensor)
hidden_states = self.upsample(hidden_states)
elif self.downsample is not None:
input_tensor = self.downsample(input_tensor)
hidden_states = self.downsample(hidden_states)
hidden_states = self.conv1(hidden_states)
if self.time_emb_proj is not None:
if not self.skip_time_act:
temb = self.nonlinearity(temb)
temb = self.time_emb_proj(temb)[:, :, None, None]
if self.time_embedding_norm == "default":
if temb is not None:
hidden_states = hidden_states + temb
hidden_states = self.norm2(hidden_states)
elif self.time_embedding_norm == "scale_shift":
if temb is None:
raise ValueError(
f" `temb` should not be None when `time_embedding_norm` is {self.time_embedding_norm}"
)
time_scale, time_shift = torch.chunk(temb, 2, dim=1)
hidden_states = self.norm2(hidden_states)
hidden_states = hidden_states * (1 + time_scale) + time_shift
else:
hidden_states = self.norm2(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
# Feature injection and AdaIN (hidden_states)
if do_structure_control and "hidden_states" in self.structure_target:
hidden_states = feature_injection(hidden_states, batch_order=self.batch_order)
if self.conv_shortcut is not None:
input_tensor = self.conv_shortcut(input_tensor)
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
# Feature injection and AdaIN (output_tensor)
if do_structure_control and "output_tensor" in self.structure_target:
output_tensor = feature_injection(output_tensor, batch_order=self.batch_order)
return output_tensor
class AttnProcessor2_0: # From <class 'diffusers.models.attention_processor.AttnProcessor2_0'> (diffusers==0.28.0)
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
*args,
**kwargs,
) -> torch.FloatTensor:
do_structure_control = attn.do_control and attn.t in attn.structure_schedule
do_appearance_control = attn.do_control and attn.t in attn.appearance_schedule
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
no_encoder_hidden_states = encoder_hidden_states is None
if no_encoder_hidden_states:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
if do_appearance_control: # Assume we only have this for self attention
hidden_states_normed = normalize(hidden_states, dim=-2) # B H D C
encoder_hidden_states_normed = normalize(encoder_hidden_states, dim=-2)
query_normed = attn.to_q(hidden_states_normed)
key_normed = attn.to_k(encoder_hidden_states_normed)
inner_dim = key_normed.shape[-1]
head_dim = inner_dim // attn.heads
query_normed = query_normed.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key_normed = key_normed.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# Match query and key injection with structure injection (if injection is happening this layer)
if do_structure_control:
if "query" in attn.structure_target:
query_normed = feature_injection(query_normed, batch_order=attn.batch_order)
if "key" in attn.structure_target:
key_normed = feature_injection(key_normed, batch_order=attn.batch_order)
# Appearance transfer (before)
if do_appearance_control and "before" in attn.appearance_target:
hidden_states = hidden_states.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
hidden_states = appearance_transfer(hidden_states, query_normed, key_normed, batch_order=attn.batch_order)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
if no_encoder_hidden_states:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
query = attn.to_q(hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# Feature injection (query, key, and/or value)
if do_structure_control:
if "query" in attn.structure_target:
query = feature_injection(query, batch_order=attn.batch_order)
if "key" in attn.structure_target:
key = feature_injection(key, batch_order=attn.batch_order)
if "value" in attn.structure_target:
value = feature_injection(value, batch_order=attn.batch_order)
# Appearance transfer (value)
if do_appearance_control and "value" in attn.appearance_target:
value = appearance_transfer(value, query_normed, key_normed, batch_order=attn.batch_order)
# The output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
# Appearance transfer (after)
if do_appearance_control and "after" in attn.appearance_target:
hidden_states = appearance_transfer(hidden_states, query_normed, key_normed, batch_order=attn.batch_order)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# Linear projection
hidden_states = attn.to_out[0](hidden_states, *args)
# Dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def register_control(
model,
timesteps,
control_schedule, # structure_conv, structure_attn, appearance_attn
control_target = [["output_tensor"], ["query", "key"], ["before"]],
):
# Assume timesteps in reverse order (T -> 0)
for block_type in ["encoder", "decoder", "middle"]:
blocks = {
"encoder": model.unet.down_blocks,
"decoder": model.unet.up_blocks,
"middle": [model.unet.mid_block],
}[block_type]
control_schedule_block = control_schedule[block_type]
if block_type == "middle":
control_schedule_block = [control_schedule_block]
for layer in range(len(control_schedule_block)):
# Convolution
num_blocks = len(blocks[layer].resnets) if hasattr(blocks[layer], "resnets") else 0
for block in range(num_blocks):
convolution = blocks[layer].resnets[block]
convolution.structure_target = control_target[0]
convolution.structure_schedule = get_schedule(
timesteps, get_elem(control_schedule_block[layer][0], block)
)
convolution.forward = MethodType(convolution_forward, convolution)
# Self-attention
num_blocks = len(blocks[layer].attentions) if hasattr(blocks[layer], "attentions") else 0
for block in range(num_blocks):
for transformer_block in blocks[layer].attentions[block].transformer_blocks:
attention = transformer_block.attn1
attention.structure_target = control_target[1]
attention.structure_schedule = get_schedule(
timesteps, get_elem(control_schedule_block[layer][1], block)
)
attention.appearance_target = control_target[2]
attention.appearance_schedule = get_schedule(
timesteps, get_elem(control_schedule_block[layer][2], block)
)
attention.processor = AttnProcessor2_0()
def register_attr(model, t, do_control, batch_order):
for layer_type in ["encoder", "decoder", "middle"]:
blocks = {"encoder": model.unet.down_blocks, "decoder": model.unet.up_blocks,
"middle": [model.unet.mid_block]}[layer_type]
for layer in blocks:
# Convolution
for module in layer.resnets:
module.t = t
module.do_control = do_control
module.batch_order = batch_order
# Self-attention
if hasattr(layer, "attentions"):
for block in layer.attentions:
for module in block.transformer_blocks:
module.attn1.t = t
module.attn1.do_control = do_control
module.attn1.batch_order = batch_order
|