turhancan97 commited on
Commit
a9e6983
·
1 Parent(s): bf48e68

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md CHANGED
@@ -1,3 +1,68 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ datasets:
4
+ - garythung/trashnet
5
+ - Zesky665/TACO
6
+ - detection-datasets/coco
7
+ language:
8
+ - en
9
+ tags:
10
+ - object-detection
11
+ - computer-vision
12
+ - yolov5
13
  ---
14
+
15
+ <div align="center">
16
+ <img width="416" alt="turhancan97/yolov5-detect-trash-classification" src="https://huggingface.co/turhancan97/yolov5-detect-trash-classification/resolve/main/example1.jpg">
17
+ </div>
18
+
19
+ ### How to use
20
+
21
+ - Install [yolov5](https://github.com/fcakyon/yolov5-pip):
22
+
23
+ ```bash
24
+ pip install -U yolov5
25
+ ```
26
+
27
+ - Load model and perform prediction:
28
+
29
+ ```python
30
+ import yolov5
31
+
32
+ # load model
33
+ model = yolov5.load('turhancan97/yolov5-detect-trash-classification')
34
+
35
+ # set model parameters
36
+ model.conf = 0.25 # NMS confidence threshold
37
+ model.iou = 0.45 # NMS IoU threshold
38
+ model.agnostic = False # NMS class-agnostic
39
+ model.multi_label = False # NMS multiple labels per box
40
+ model.max_det = 1000 # maximum number of detections per image
41
+
42
+ # set image
43
+ img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
44
+
45
+ # perform inference
46
+ results = model(img, size=640)
47
+
48
+ # inference with test time augmentation
49
+ results = model(img, augment=True)
50
+
51
+ # parse results
52
+ predictions = results.pred[0]
53
+ boxes = predictions[:, :4] # x1, y1, x2, y2
54
+ scores = predictions[:, 4]
55
+ categories = predictions[:, 5]
56
+
57
+ # show detection bounding boxes on image
58
+ results.show()
59
+
60
+ # save results into "results/" folder
61
+ results.save(save_dir='results/')
62
+ ```
63
+
64
+ - Finetune the model on your custom dataset:
65
+
66
+ ```bash
67
+ yolov5 train --data data.yaml --img 416 --batch 16 --weights turhancan97/yolov5-detect-trash-classification --epochs 10
68
+ ```