TunBERT / tunBertClassificationPipeline.py
not-lain's picture
Create tunBertClassificationPipeline.py
17ad6cf verified
raw
history blame
926 Bytes
from transformers import Pipeline
import torch
class TBCP(Pipeline):
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "text_pair" in kwargs:
preprocess_kwargs["text_pair"] = kwargs["text_pair"]
return preprocess_kwargs, {}, {}
def preprocess(self, text, text_pair=None):
return self.tokenizer(text, text_pair=text_pair, return_tensors="pt")
def _forward(self, model_inputs):
return self.model(**model_inputs)
def postprocess(self, model_outputs):
logits = model_outputs.logits
probabilities = torch.nn.functional.softmax(logits, dim=-1)
best_class = probabilities.argmax().item()
label = self.model.config.id2label[best_class]
score = probabilities.squeeze()[best_class].item()
logits = logits.squeeze().tolist()
return {"label": label, "score": score, "logits": logits}