File size: 1,535 Bytes
83dab7c 35d3945 83dab7c 35d3945 83dab7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModelForSequenceClassification, PreTrainedModel,AutoConfig, BertModel
from transformers.modeling_outputs import SequenceClassifierOutput
from transformers.models.bert.configuration_bert import BertConfig
class classifier(nn.Module):
def __init__(self,config):
super().__init__()
self.layer0 = nn.Linear(in_features=config.hidden_size, out_features=config.hidden_size, bias=True)
self.layer1 = nn.Linear(in_features=config.hidden_size, out_features=config.type_vocab_size, bias=True)
def forward(self,tensor):
out1 = self.layer0(tensor)
return self.layer1(out1)
class TunBERT(PreTrainedModel):
config_class = BertConfig
def __init__(self, config):
super().__init__(config)
self.BertModel = BertModel(config)
self.dropout = nn.Dropout(p=0.1, inplace=False)
self.classifier = classifier(config)
def forward(self,input_ids=None,token_type_ids=None,attention_mask=None,labels=None) :
outputs = self.BertModel(input_ids,token_type_ids,attention_mask)
sequence_output = self.dropout(outputs.last_hidden_state)
logits = self.classifier(sequence_output)
loss =None
if labels is not None :
loss_func = nn.CrossentropyLoss()
loss = loss_func(logits.view(-1,self.config.type_vocab_size),labels.view(-1))
return SequenceClassifierOutput(loss = loss, logits= logits, hidden_states=outputs.last_hidden_state,attentions=outputs.attentions) |