File size: 5,598 Bytes
783c190
b46a7db
 
 
 
 
 
5373044
64359b1
5373044
 
f1e58a5
 
783c190
b46a7db
5373044
b46a7db
d51a521
f1e58a5
 
b46a7db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5373044
b46a7db
 
 
 
5373044
 
 
 
 
 
 
 
 
 
 
 
 
 
b46a7db
5373044
 
 
 
 
b46a7db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5373044
 
b46a7db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1e58a5
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- negation
license: cc-by-sa-4.0
language:
- en
datasets:
- tum-nlp/cannot-dataset
---

# NegMPNet

This is a negation-aware version of [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2).
It is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.  
For further information, see our paper [This is not correct! Negation-aware Evaluation of Language Generation Systems](https://arxiv.org/abs/2307.13989).

<!--- Describe your model here -->

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer("tum-nlp/NegMPNet")
embeddings = model.encode(sentences)
print(embeddings)
```

## Negation-awareness
This model has a better sensitivity towards negations compared to its base model. You can try it yourself:
```python
from sentence_transformers import SentenceTransformer, util
import torch

base_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
finetuned_model = SentenceTransformer("tum-nlp/NegMPNet")

def cos_similarities(references: list, candidates: list, model: SentenceTransformer, batch_size=8) -> torch.Tensor:
    assert len(references) == len(candidates), "Number of references and candidates must be equal"
    emb_ref = model.encode(references, batch_size=batch_size)
    emb_cand = model.encode(candidates, batch_size=batch_size)
    return torch.diag(util.cos_sim(emb_ref, emb_cand))

references = ["Ray charles is legendary.", "Ray charles is legendary"]
candidates = ["Ray charles is a legend.", "Ray charles isn't legendary."]
print(cos_similarities(references, candidates, base_model)) # prints tensor([0.9453, 0.8683]) -> no negation-awareness
print(cos_similarities(references, candidates, finetuned_model)) # prints tensor([0.9585, 0.4263]) -> sensitive to negation
```

## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("tum-nlp/NegMPNet")
model = AutoModel.from_pretrained("tum-nlp/NegMPNet")

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```



## Evaluation Results

<!--- Describe how your model was evaluated -->

For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})


## Training
The model was trained with the parameters:

**DataLoader**:

`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 358 with parameters:
```
{'batch_size': 64}
```

**Loss**:

`__main__.MultipleNegativesRankingLoss` with parameters:
  ```
  {'scale': 20.0, 'similarity_fct': 'cos_sim'}
  ```

Parameters of the fit()-Method:
```
{
    "epochs": 1,
    "evaluation_steps": 35,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 36,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citation
Please cite our [INLG 2023 paper](https://arxiv.org/abs/2307.13989), if you use our model. 
**BibTeX:**
```bibtex
@misc{anschütz2023correct,
      title={This is not correct! Negation-aware Evaluation of Language Generation Systems}, 
      author={Miriam Anschütz and Diego Miguel Lozano and Georg Groh},
      year={2023},
      eprint={2307.13989},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```