File size: 11,129 Bytes
345ee20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
<div align='center'>
<h2>Hulk: A Universal Knowledge Translator for Human-centric Tasks</h2>
[Yizhou Wang](https://scholar.google.com/citations?user=CQGaGMAAAAAJ&hl=zh-CN&authuser=1)<sup>1*</sup>, [Yixuan Wu](https://scholar.google.com/citations?user=zjAxJcwAAAAJ&hl=en&oi=ao)<sup>1*,2</sup>, [Shixiang Tang](https://github.com/tangshixiang)<sup>1 :email:</sup>, [Weizhen He]()<sup>2,3</sup>,
[Xun Guo](https://github.com/Space-Xun)<sup>1,4</sup>, [Feng Zhu](https://zhufengx.github.io/)<sup>3</sup>, [Lei Bai](http://leibai.site/)<sup>1</sup>, [Rui Zhao](http://zhaorui.xyz/)<sup>3</sup>,
[Jian Wu]()<sup>2</sup>, [Tong He](http://tonghe90.github.io/)<sup>1</sup>, [Wanli Ouyang](https://wlouyang.github.io/)<sup>1</sup>
<sup>1</sup>[Shanghai AI Lab](https://www.shlab.org.cn/), <sup>2</sup>[ZJU](https://www.zju.edu.cn/), <sup>3</sup>[SenseTime](https://www.sensetime.com), <sup>4</sup>[USTC](https://www.ustc.edu.cn/)
[ArXiv](https://arxiv.org/abs/2312.01697) | [Project Page](https://humancentricmodels.github.io/Hulk/)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/hulk-a-universal-knowledge-translator-for/pose-estimation-on-aic)](https://paperswithcode.com/sota/pose-estimation-on-aic?p=hulk-a-universal-knowledge-translator-for)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/hulk-a-universal-knowledge-translator-for/human-part-segmentation-on-cihp)](https://paperswithcode.com/sota/human-part-segmentation-on-cihp?p=hulk-a-universal-knowledge-translator-for)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/hulk-a-universal-knowledge-translator-for/skeleton-based-action-recognition-on-ntu-rgbd)](https://paperswithcode.com/sota/skeleton-based-action-recognition-on-ntu-rgbd?p=hulk-a-universal-knowledge-translator-for)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/hulk-a-universal-knowledge-translator-for/semantic-segmentation-on-lip-val)](https://paperswithcode.com/sota/semantic-segmentation-on-lip-val?p=hulk-a-universal-knowledge-translator-for)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/hulk-a-universal-knowledge-translator-for/human-part-segmentation-on-human3-6m)](https://paperswithcode.com/sota/human-part-segmentation-on-human3-6m?p=hulk-a-universal-knowledge-translator-for)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/hulk-a-universal-knowledge-translator-for/pedestrian-attribute-recognition-on-rapv2)](https://paperswithcode.com/sota/pedestrian-attribute-recognition-on-rapv2?p=hulk-a-universal-knowledge-translator-for)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/hulk-a-universal-knowledge-translator-for/pedestrian-attribute-recognition-on-pa-100k)](https://paperswithcode.com/sota/pedestrian-attribute-recognition-on-pa-100k?p=hulk-a-universal-knowledge-translator-for)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/hulk-a-universal-knowledge-translator-for/pose-estimation-on-coco)](https://paperswithcode.com/sota/pose-estimation-on-coco?p=hulk-a-universal-knowledge-translator-for)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/hulk-a-universal-knowledge-translator-for/object-detection-on-crowdhuman-full-body)](https://paperswithcode.com/sota/object-detection-on-crowdhuman-full-body?p=hulk-a-universal-knowledge-translator-for)
</div>
<p align="center">
<img src="assets/teaser.png" width="1000" />
</p>
Welcome to **Hulk**! Hulk is a multimodel human-centric generalist model, capable of addressing 2D vision, 3D vision, skeleton-based, and vision-language human-centric tasks. Unlike many existing human-centric foundation models that
did not explore 3D and vision-language tasks for human-centric and required task-specific finetuning, Hulk condensed various task-specific heads into two general heads, one for discrete representations, e.g., languages,
and the other for continuous representations, e.g., location coordinates. Unifying these tasks enables Hulk to treat diverse human-centric tasks as modality translation, integrating knowledge across a wide range of tasks.
For more details, please take a look at our paper [Hulk: A Universal Knowledge Translator for Human-centric Tasks](https://arxiv.org/abs/2312.01697).
<p align="center">
<img src="assets/framework.png" width="1000" />
</p>
## News
- _Apr. 2024_ A pretrained Hulk is released on [🤗 Hugging Face Models](https://huggingface.co/OpenGVLab/Hulk/tree/main)!
- _Apr. 2024_ Project page with demos is released at [Hulk](https://humancentricmodels.github.io/Hulk/).
- _Mar. 2024_ Training and inference code are released!
- _Dec. 2023_ Hulk is released on [ArXiv](https://arxiv.org/abs/2312.01697)!
## Installation
This codebase has been developed with python version 3.9, pytorch 2.0.0, cuda 11.8 and torchvision 0.15.0.
We recommend using the same version to avoid potential issues.
```bash
pip install -r requirements.txt
```
Also, download [bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) from huggingface and put it under `experiments/release/`.
## Datasets
Please refer to the [datasets](docs/datasets.md) for more details.
## Training
Download pre-trained MAE weights from [here](https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth) and put it under `core/models/backbones/pretrain_weights/`.
We use 10 nodes (80 A100 GPUs) for training with the following command:
```bash
cd experiments/release
sh train.sh 80 Hulk_vit-B
```
## Evaluation
A pretrained Hulk will be soon available at [🤗 Hugging Face Models](https://huggingface.co/OpenGVLab/Hulk/tree/main).
Download it, put it under the folder `experiments/release/checkpoints/Hulk_vit-B` (first `mkdir -p experiments/release/checkpoints/Hulk_vit-B`), then use the following command to evaluate the model on the test set.
```bash
cd experiments/release
sh batch_eval.sh 1 Hulk_vit-B
```
## Model Performance
We use the plain ViT as our backbone, develop four modality-specific tokenizers and de-tokenizers
to cover 2D vision, 3D vision, skeleton-based, and vision-language human-centric tasks.
Hulk has achieved state-of-the-art results on various human-centric tasks.
### Direct Evaluation
<table border="1" width="100%">
<tr align="center">
<th colspan="1"> Task <th colspan="3"> pedestrian detection </th><th colspan="2"> 2D pose </th><th colspan="1">skeleton-based action</th><th colspan="3">human parsing</th> <th colspan="2"> attribute recognition </th> <th colspan="1"> image caption </th> <th colspan="5"> monocular 3D human pose and mesh recovery</th>
</tr>
<tr align="center">
<th colspan="1"> Dataset <th colspan="3"> CrowdHuman </th><th colspan="1"> COCO </th><th colspan="1"> AIC </th><th colspan="1"> NTU60-XSub </th> <th colspan="1"> H3.6M</th> <th colspan="1"> LIP </th> <th colspan="1"> CIHP </th> <th colspan="1"> PA-100k </th> <th colspan="1"> RAPv2 </th> <th colspan="1"> CUHK-PEDES </th> <th colspan="3"> 3DPW </th> <th colspan="2"> H3.6M </th>
</tr>
<tr align="center">
<!-- <th> Metric </th> -->
<th colspan="1"> Metric <th> mAP </th> <th> MR<sup>-2</sup> </th> <th> JI </th> <th colspan="1"> AP </th><th colspan="1">AP</th><th colspan="1">acc.</th> <th> mIoU </th> <th>mIoU </th> <th> mIoU </th> <th> mA </th> <th> mA </th> <th> B@4 </th> <th>MPVPE↓</th> <th>MPJPE↓</th> <th> PA-MPJPE↓ </th> <th> MPJPE↓ </th> <th> PA-MPJPE↓ </th>
</tr>
<tr align="center">
<th colspan="1"> Hulk (ViT-B) <th> 90.7 </th> <th> 43.8</th> <th> 84.0</th> <th colspan="1"> 77.0 </th> <th> 34.5 </th> <th>93.8 </th> <th> 68.08 </th> <th> 63.95 </th> <th> 70.58 </th> <th> 82.85 </th> <th> 80.90 </th> <th> 31.1 </th> <th>79.8 </th> <th> 67.0 </th> <th> 39.9 </th> <th> 43.6 </th> <th> 31.9 </th>
</tr>
<tr align="center">
<th colspan="1"> Hulk (ViT-L) <th> 92.2 </th> <th> 40.1 </th> <th> 85.8 </th> <th colspan="1"> 78.3 </th> <th> 36.3 </th> <th>94.1</th> <th> 69.31 </th> <th> 65.86 </th> <th> 72.33 </th> <th> 84.36 </th> <th> 82.85 </th> <th> 31.6 </th> <th> 77.4 </th> <th> 66.3 </th> <th> 38.5</th> <th> 40.3 </th> <th> 28.8 </th>
</tr>
</table>
<br>
### Finetune Performance
<table border="1" width="100%">
<tr align="center">
<th colspan="1"> Task <th colspan="3"> pedestrian detection </th><th colspan="2"> 2D pose </th><th colspan="1">skeleton-based action</th><th colspan="3">human parsing</th> <th colspan="2"> attribute recognition </th> <th colspan="1"> image caption ♣</th> <th colspan="5"> monocular 3D human pose and mesh recovery ♣ </th>
</tr>
<tr align="center">
<th colspan="1"> Dataset <th colspan="3"> CrowdHuman </th><th colspan="1"> COCO </th><th colspan="1"> AIC </th><th colspan="1"> NTU60-XSub </th> <th colspan="1"> H3.6M</th> <th colspan="1"> LIP </th> <th colspan="1"> CIHP </th> <th colspan="1"> PA-100k </th> <th colspan="1"> RAPv2 </th> <th colspan="1"> CUHK-PEDES </th> <th colspan="3"> 3DPW </th> <th colspan="2"> H3.6M </th>
</tr>
<tr align="center">
<!-- <th> Metric </th> -->
<th colspan="1"> Metric <th> mAP </th> <th> MR<sup>-2</sup> </th> <th> JI </th> <th colspan="1"> AP </th><th colspan="1">AP</th><th colspan="1">acc.</th> <th> mIoU </th> <th>mIoU </th> <th> mIoU </th> <th> mA </th> <th> mA </th> <th> B@4 </th> <th>MPVPE↓</th> <th>MPJPE↓</th> <th> PA-MPJPE↓ </th> <th> MPJPE↓ </th> <th> PA-MPJPE↓ </th>
</tr>
<tr align="center">
<th colspan="1"> Hulk (ViT-B) <th> 92.4 </th> <th> 40.7</th> <th> 86.0</th> <th colspan="1"> 77.5 </th> <th> 35.6 </th> <th>94.0 </th> <th> 68.56 </th> <th> 63.98 </th> <th> 71.26 </th> <th> 87.85 </th> <th> 85.26 </th> <th> 28.3 </th> <th>80.7 </th> <th> 68.9 </th> <th> 41.3 </th> <th> 44.9 </th> <th> 32.0 </th>
</tr>
<tr align="center">
<th colspan="1"> Hulk (ViT-L) <th> 93.0 </th> <th> 36.5 </th> <th> 87.0 </th> <th colspan="1"> 78.7 </th> <th> 37.1 </th> <th>94.3</th> <th> 69.89 </th> <th> 66.02 </th> <th> 72.68 </th> <th> 88.97 </th> <th> 85.86 </th> <th> 30.5 </th> <th> 79.9 </th> <th> 68.3 </th> <th> 40.6</th> <th> 41.4 </th> <th> 30.2 </th>
</tr>
</table>
<br>
♣: We find that the performance of image caption and monocular 3D human pose and mesh recovery is not as good as the direct evaluation, indicating that overfitting may occur during finetuning.
## Contact
If you have any problem about our paper & code, feel free to contact [Yizhou Wang]([email protected]) and [Yixuan Wu]([email protected]).
## Citation
If you find this work useful, please consider citing:
```bibtex
@article{wang2023hulk,
title={Hulk: A Universal Knowledge Translator for Human-Centric Tasks},
author={Wang, Yizhou and Wu, Yixuan and Tang, Shixiang and He, Weizhen and Guo, Xun and Zhu, Feng and Bai, Lei and Zhao, Rui and Wu, Jian and He, Tong and others},
journal={arXiv preprint arXiv:2312.01697},
year={2023}
}
``` |