File size: 6,139 Bytes
345ee20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import torch
import torch.nn as nn
import logging
from collections import Iterable

# from .misc_helper import to_device


logger = logging.getLogger('global')


def clever_format(nums, format="%.2f"):
    if not isinstance(nums, Iterable):
        nums = [nums]
    clever_nums = []

    for num in nums:
        num = int(num)
        if num > 1e12:
            clever_nums.append(format % (num / 1e12) + "T")
        elif num > 1e9:
            clever_nums.append(format % (num / 1e9) + "G")
        elif num > 1e6:
            clever_nums.append(format % (num / 1e6) + "M")
        elif num > 1e3:
            clever_nums.append(format % (num / 1e3) + "K")
        else:
            clever_nums.append(format % num + "B")

    clever_nums = clever_nums[0] if len(clever_nums) == 1 else (*clever_nums,)

    return clever_nums


def flops_cal(model, input_shape):
    inputs = {
        'image': torch.randn(1, input_shape[0], input_shape[1], input_shape[2]),
        'image_info': [[input_shape[1], input_shape[2], 1, input_shape[1], input_shape[2], False]],
        'filename': ['Test.jpg'],
        'label': torch.LongTensor([[0]]),
    }
    # flops, params = profile(model, inputs=(to_device(inputs),))
    flops, params = profile(model, inputs=(inputs,))
    flops_str, params_str = clever_format([flops, params], "%.3f")
    flops = flops / 1e6
    params = flops / 1e6
    return flops, params, flops_str, params_str


def profile(model, inputs, verbose=True):
    handler_collection = []

    def add_hooks(m):
        if len(list(m.children())) > 0:
            return

        m.register_buffer('total_ops', torch.zeros(1))
        m.register_buffer('total_params', torch.zeros(1))

        m_type = type(m)
        fn = None
        if m_type in register_hooks:
            fn = register_hooks[m_type]

        if fn is None:
            if verbose:
                print("No implemented counting method for {} in flops_helper".format(m))
        else:
            handler = m.register_forward_hook(fn)
            handler_collection.append(handler)

    # original_device = model.parameters().__next__().device
    training = model.training

    model.eval()
    model.apply(add_hooks)

    # with torch.no_grad():
    model(*inputs)

    total_ops = 0
    total_params = 0
    for m in model.modules():
        if len(list(m.children())) > 0:  # skip for non-leaf module
            continue
        total_ops += m.total_ops
        total_params += m.total_params

    # total_ops = total_ops.item()
    # total_params = total_params.item()
    total_ops = total_ops[0]
    total_params = total_params[0]

    # reset model to original status
    model.train(training)
    for handler in handler_collection:
        handler.remove()

    return total_ops, total_params


multiply_adds = 1


def count_zero(m, x, y):
    m.total_ops = torch.Tensor([0])
    m.total_params = torch.Tensor([0])


def count_conv2d(m, x, y):
    cin = m.in_channels
    cout = m.out_channels
    kh, kw = m.kernel_size
    out_h = y.size(2)
    out_w = y.size(3)
    batch_size = x[0].size(0)

    kernel_ops = multiply_adds * kh * kw
    bias_ops = 1 if m.bias is not None else 0

    output_elements = batch_size * out_w * out_h * cout
    total_ops = output_elements * kernel_ops * cin // m.groups + bias_ops * output_elements
    m.total_ops = torch.Tensor([int(total_ops)])

    total_params = kh * kw * cin * cout // m.groups + bias_ops * cout
    m.total_params = torch.Tensor([int(total_params)])


def count_bn(m, x, y):
    x = x[0]
    c_out = y.size(1)
    nelements = x.numel()
    # subtract, divide, gamma, beta
    total_ops = 4 * nelements

    m.total_ops = torch.Tensor([int(total_ops)])
    m.total_params = torch.Tensor([int(c_out) * 2])


def count_relu(m, x, y):
    x = x[0]
    nelements = x.numel()
    total_ops = nelements

    m.total_ops = torch.Tensor([int(total_ops)])


def count_softmax(m, x, y):
    x = x[0]
    batch_size, nfeatures = x.size()
    total_exp = nfeatures
    total_add = nfeatures - 1
    total_div = nfeatures
    total_ops = batch_size * (total_exp + total_add + total_div)

    m.total_ops = torch.Tensor([int(total_ops)])


def count_avgpool(m, x, y):
    total_add = torch.prod(torch.Tensor([m.kernel_size]))
    total_div = 1
    kernel_ops = total_add + total_div
    num_elements = y.numel()
    total_ops = kernel_ops * num_elements

    m.total_ops = torch.Tensor([int(total_ops)])


def count_adap_avgpool(m, x, y):
    kernel = torch.Tensor([*(x[0].shape[2:])]) // torch.Tensor(list((m.output_size,))).squeeze()
    total_add = torch.prod(kernel)
    total_div = 1
    kernel_ops = total_add + total_div
    num_elements = y.numel()
    total_ops = kernel_ops * num_elements

    m.total_ops = torch.Tensor([int(total_ops)])


def count_linear(m, x, y):
    # per output element
    total_mul = m.in_features
    total_add = m.in_features - 1
    num_elements = y.numel()
    total_ops = (total_mul + total_add) * num_elements

    m.total_ops = torch.Tensor([int(total_ops)])
    m.total_params = torch.Tensor([m.in_features * m.out_features])


register_hooks = {
    nn.Conv2d: count_conv2d,
    nn.BatchNorm2d: count_zero,
    nn.InstanceNorm2d: count_zero,
    nn.ConvTranspose2d: count_conv2d,
    nn.ReLU: count_zero,
    nn.ReLU6: count_zero,
    nn.Tanh: count_zero,
    nn.LeakyReLU: count_zero,
    nn.AvgPool2d: count_zero,
    nn.AdaptiveAvgPool2d: count_zero,
    nn.Linear: count_linear,
    nn.Dropout: count_zero,
    nn.Sigmoid: count_zero,
    nn.Softmax: count_zero,
    # VarChannelConv2d: VarChannelConv2d.flops_count,
    # VarChannelBatchNorm2d: VarChannelBatchNorm2d.flops_count,
    # VarChannelSyncBatchNorm2d: VarChannelSyncBatchNorm2d.flops_count,
    # VarChannelSyncMultiBatchNorm2d: VarChannelSyncMultiBatchNorm2d.flops_count,
    # VarChannelLinear: VarChannelLinear.flops_count,
    # DeprecatedGroupSyncBatchNorm: count_zero,
    # Identity: count_zero,
    # VcIdentity: count_zero,
    nn.MaxPool2d: count_zero,
    nn.CrossEntropyLoss: count_zero,
    # SamePadConv2d: count_conv2d,
    # conv_bn_swish: count_zero,
    # Swish: count_zero
}