File size: 35,749 Bytes
345ee20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 |
import itertools
import json
import logging
import os
import time
from collections import OrderedDict
import numpy as np
from .detools.box import DetBox
from pycocotools.cocoeval import COCOeval
from pycocotools.coco import COCO
import pycocotools.mask as mask_util
import torch
import torch.nn as nn
import torch.distributed as dist
from torch.nn import functional as F
from pathlib import Path
import cv2, math
from tqdm import tqdm
from multiprocessing import Queue, Process
from scipy.optimize import linear_sum_assignment
from core.data.datasets.images import peddet_dataset_v2 as peddet_dataset
import torch.distributed as dist
from .seg_tester_dev import DatasetEvaluator
# from petrelbox.io import PetrelHelper
PERSON_CLASSES = ['background', 'person']
class PedDetEvaluator(DatasetEvaluator):
"""
Evaluate Pedestrain Detection metrics
"""
def __init__(
self,
dataset_name,
config,
distributed=True,
output_dir=None,
):
"""
Args:
dataset_name (str): name of the dataset to be evaluated.
distributed (bool): if True, will collect results from all ranks for evaluation.
Otherwise, will evaluate the results in the current process.
output_dir (str): an output directory to dump results.
num_classes, ignore_label: deprecated argument
"""
self._logger = logging.getLogger(__name__)
self._dataset_name = dataset_name
self._distributed = distributed
self._output_dir = output_dir
self._cpu_device = torch.device("cpu")
self._thr = config.tester.kwargs.pos_thr
self._gt_path = config.tester.kwargs.gt_path if config.tester.kwargs.gt_path.startswith('/mnt') else str((Path(peddet_dataset.__file__).parent / 'resources' / config.tester.kwargs.gt_path).resolve())
def reset(self):
self._predictions = []
def process(self, inputs, outputs):
"""
Args:
inputs: the inputs to a model
It is a list of dicts. Each dict corresponds to an image and
contains keys like "height", "width", "file_name".
outputs: the outputs of a model. It is list of dicts with key "logits" and "bbox"
"""
orig_target_sizes = inputs["orig_size"]
filtered_outputs = [self.deplicate(r, self._thr) for r in outputs]
results = [{k:v.cpu().numpy() for k, v in r.items()} for r in filtered_outputs]
dtboxes = [np.hstack([r['boxes'], r['scores'][:, np.newaxis]]) for r in results]
dtboxes = [self.boxes_dump(db) for db in dtboxes]
filenames = inputs['filename']
res = [{'ID':name, 'dtboxes':db} for name, db in zip(filenames, dtboxes)]
assert len(res) == len(outputs)
self._predictions.extend(res)
def deplicate(self, record, thr):
assert 'scores' in record
names = [k for (k, v) in record.items()]
flag = record['scores'] >= thr
for name in names:
record[name] = record[name][flag]
return record
@staticmethod
def all_gather(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = dist.get_world_size()
if world_size == 1:
return [data]
# serialized to a Tensor
buffer = pickle.dumps(data)
storage = torch.ByteStorage.from_buffer(buffer)
tensor = torch.ByteTensor(storage).to("cuda")
# obtain Tensor size of each rank
local_size = torch.tensor([tensor.numel()], device="cuda")
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
dist.all_gather(size_list, local_size)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
if local_size != max_size:
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda")
tensor = torch.cat((tensor, padding), dim=0)
dist.all_gather(tensor_list, tensor)
data_list = []
for size, tensor in zip(size_list, tensor_list):
buffer = tensor.cpu().numpy().tobytes()[:size]
data_list.append(pickle.loads(buffer))
return data_list
def evaluate(self):
"""
: return: "AP", "MR", "JI", "Recall"
"""
if self._distributed:
torch.cuda.synchronize()
predictions_list = self.all_gather(self._predictions)
if dist.get_rank() != 0:
return
proxy_number = time.time()
file_path = os.path.join('tmp', 'CrowdHuman', f'Iter-{proxy_number}.human')
self.save_results(self._predictions, file_path)
eval_results = self._evaluate_predictions_on_crowdhuman(self._gt_path, file_path)
res = {}
metric_names = ["AP", "MR", "JI", "Recall"]
for k, v in zip(metric_names, eval_results):
print(f"{k}: {v}")
res[k] = v
results = OrderedDict({"pedestrain_detection": res})
self._logger.info(results)
os.remove(file_path)
print(f"{file_path} deleted")
return results
def save_results(self, content, fpath):
os.makedirs(os.path.dirname(fpath), exist_ok=True)
print("save results to {}".format(fpath))
with open(fpath,'w') as fid:
for db in content:
line = json.dumps(db)+'\n'
fid.write(line)
def boxes_dump(self, dtboxes):
n, boxes = dtboxes.shape[0], []
for i in range(n):
db = np.float64(dtboxes[i,:])
dbox = DetBox(db[0], db[1], db[2]-db[0],
db[3]-db[1], tag = 1, score = db[4])
boxes.append(dbox.dumpOdf())
return boxes
def _evaluate_predictions_on_crowdhuman(self, gt_path, dt_path, target_key="box", mode=0):
"""
Evaluate the coco results using COCOEval API.
"""
database = Database(gt_path, dt_path, target_key, None, mode)
database.compare()
AP, recall, data = database.eval_AP()
mMR, _ = database.eval_MR(fppiX=data[-2], fppiY=data[-1])
return AP, mMR, computeJaccard(gt_path, dt_path), recall
class PedDetMAEEvaluator(PedDetEvaluator):
def process(self, inputs, outputs):
"""
Args:
inputs: the inputs to a model
It is a list of dicts. Each dict corresponds to an image and
contains keys like "height", "width", "file_name".
outputs: the outputs of a model. It is list of dicts with key "logits" and "bbox"
"""
orig_target_sizes = inputs["orig_size"]
import pdb;
# pdb.set_trace()
filtered_outputs = [self.deplicate(r, self._thr) for r in outputs['pred']]
results = [{k:v.cpu().numpy() for k, v in r.items()} for r in filtered_outputs]
dtboxes = [np.hstack([r['boxes'], r['scores'][:, np.newaxis]]) for r in results]
dtboxes = [self.boxes_dump(db) for db in dtboxes]
filenames = inputs['filename']
res = [{'ID':name, 'dtboxes':db} for name, db in zip(filenames, dtboxes)]
assert len(res) == len(outputs['pred'])
self._predictions.extend(res)
# pdb.set_trace()
def evaluate(self):
"""
: return: "AP", "MR", "JI", "Recall"
"""
if self._distributed:
torch.cuda.synchronize()
predictions_list = self.all_gather(self._predictions)
if dist.get_rank() != 0:
return
proxy_number = time.time()
file_path = os.path.join('tmp', 'CrowdHuman', f'Iter-{proxy_number}.human')
self.save_results(self._predictions, file_path)
eval_results = self._evaluate_predictions_on_crowdhuman(self._gt_path, file_path)
res = {}
metric_names = ["AP", "MR", "JI", "Recall"]
for k, v in zip(metric_names, eval_results):
print(f"{k}: {v}")
res[k] = v
results = OrderedDict({"pedestrian_detection": res})
self._logger.info(results)
os.remove(file_path)
print(f"{file_path} deleted")
return results
def _evaluate_predictions_on_crowdhuman(self, gt_path, dt_path, target_key="box", mode=0):
"""
Evaluate the coco results using COCOEval API.
"""
database = Database(gt_path, dt_path, target_key, None, mode)
database.compare()
AP, recall, data = database.eval_AP()
mMR, _ = database.eval_MR(fppiX=data[-2], fppiY=data[-1])
return AP, mMR, 0, recall
class Image(object):
def __init__(self, mode):
self.ID = None
self._width = None
self._height = None
self.dtboxes = None
self.gtboxes = None
self.eval_mode = mode
self._ignNum = None
self._gtNum = None
self._dtNum = None
def load(self, record, body_key, head_key, class_names, gtflag):
"""
:meth: read the object from a dict
"""
if "ID" in record and self.ID is None:
self.ID = record['ID']
if "width" in record and self._width is None:
self._width = record["width"]
if "height" in record and self._height is None:
self._height = record["height"]
if gtflag:
self._gtNum = len(record["gtboxes"])
body_bbox, head_bbox = self.load_gt_boxes(record, 'gtboxes', class_names)
if self.eval_mode == 0:
self.gtboxes = body_bbox
self._ignNum = (body_bbox[:, -1] == -1).sum()
elif self.eval_mode == 1:
self.gtboxes = head_bbox
self._ignNum = (head_bbox[:, -1] == -1).sum()
elif self.eval_mode == 2:
gt_tag = np.array(
[body_bbox[i, -1] != -1 and head_bbox[i, -1] != -1
for i in range(len(body_bbox))]
)
self._ignNum = (gt_tag == 0).sum()
self.gtboxes = np.hstack(
(body_bbox[:, :-1], head_bbox[:, :-1], gt_tag.reshape(-1, 1))
)
else:
raise Exception('Unknown evaluation mode!')
if not gtflag:
self._dtNum = len(record["dtboxes"])
if self.eval_mode == 0:
self.dtboxes = self.load_det_boxes(record, 'dtboxes', body_key, 'score')
elif self.eval_mode == 1:
self.dtboxes = self.load_det_boxes(record, 'dtboxes', head_key, 'score')
elif self.eval_mode == 2:
body_dtboxes = self.load_det_boxes(record, 'dtboxes', body_key)
head_dtboxes = self.load_det_boxes(record, 'dtboxes', head_key, 'score')
self.dtboxes = np.hstack((body_dtboxes, head_dtboxes))
else:
raise Exception('Unknown evaluation mode!')
def compare_caltech(self, thres):
"""
:meth: match the detection results with the groundtruth by Caltech matching strategy
:param thres: iou threshold
:type thres: float
:return: a list of tuples (dtbox, imageID), in the descending sort of dtbox.score
"""
if self.dtboxes is None or self.gtboxes is None:
return list()
dtboxes = self.dtboxes if self.dtboxes is not None else list()
gtboxes = self.gtboxes if self.gtboxes is not None else list()
dtboxes = np.array(sorted(dtboxes, key=lambda x: x[-1], reverse=True))
gtboxes = np.array(sorted(gtboxes, key=lambda x: x[-1], reverse=True))
if len(dtboxes):
overlap_iou = self.box_overlap_opr(dtboxes, gtboxes[gtboxes[:, -1] > 0], True)
overlap_ioa = self.box_overlap_opr(dtboxes, gtboxes[gtboxes[:, -1] <= 0], False)
ign = np.any(overlap_ioa > thres, 1)
pos = np.any(overlap_iou > thres, 1)
else:
return list()
scorelist = list()
for i, dt in enumerate(dtboxes):
maxpos = np.argmax(overlap_iou[i])
if overlap_iou[i, maxpos] > thres:
overlap_iou[:, maxpos] = 0
scorelist.append((dt, 1, self.ID, pos[i]))
elif not ign[i]:
scorelist.append((dt, 0, self.ID, pos[i]))
return scorelist
def compare_caltech_union(self, thres):
"""
:meth: match the detection results with the groundtruth by Caltech matching strategy
:param thres: iou threshold
:type thres: float
:return: a list of tuples (dtbox, imageID), in the descending sort of dtbox.score
"""
dtboxes = self.dtboxes if self.dtboxes is not None else list()
gtboxes = self.gtboxes if self.gtboxes is not None else list()
if len(dtboxes) == 0:
return list()
dt_matched = np.zeros(dtboxes.shape[0])
gt_matched = np.zeros(gtboxes.shape[0])
dtboxes = np.array(sorted(dtboxes, key=lambda x: x[-1], reverse=True))
gtboxes = np.array(sorted(gtboxes, key=lambda x: x[-1], reverse=True))
dt_body_boxes = np.hstack((dtboxes[:, :4], dtboxes[:, -1][:, None]))
dt_head_boxes = dtboxes[:, 4:8]
gt_body_boxes = np.hstack((gtboxes[:, :4], gtboxes[:, -1][:, None]))
gt_head_boxes = gtboxes[:, 4:8]
overlap_iou = self.box_overlap_opr(dt_body_boxes, gt_body_boxes, True)
overlap_head = self.box_overlap_opr(dt_head_boxes, gt_head_boxes, True)
overlap_ioa = self.box_overlap_opr(dt_body_boxes, gt_body_boxes, False)
scorelist = list()
for i, dt in enumerate(dtboxes):
maxpos = -1
maxiou = thres
for j, gt in enumerate(gtboxes):
if gt_matched[j] == 1:
continue
if gt[-1] > 0:
o_body = overlap_iou[i][j]
o_head = overlap_head[i][j]
if o_body > maxiou and o_head > maxiou:
maxiou = o_body
maxpos = j
else:
if maxpos >= 0:
break
else:
o_body = overlap_ioa[i][j]
if o_body > thres:
maxiou = o_body
maxpos = j
if maxpos >= 0:
if gtboxes[maxpos, -1] > 0:
gt_matched[maxpos] = 1
dt_matched[i] = 1
scorelist.append((dt, 1, self.ID))
else:
dt_matched[i] = -1
else:
dt_matched[i] = 0
scorelist.append((dt, 0, self.ID))
return scorelist
def box_overlap_opr(self, dboxes: np.ndarray, gboxes: np.ndarray, if_iou) -> np.ndarray:
eps = 1e-6
assert dboxes.shape[-1] >= 4 and gboxes.shape[-1] >= 4
N, K = dboxes.shape[0], gboxes.shape[0]
dtboxes = np.tile(np.expand_dims(dboxes, axis=1), (1, K, 1))
gtboxes = np.tile(np.expand_dims(gboxes, axis=0), (N, 1, 1))
iw = (np.minimum(dtboxes[:, :, 2], gtboxes[:, :, 2])
- np.maximum(dtboxes[:, :, 0], gtboxes[:, :, 0]))
ih = (np.minimum(dtboxes[:, :, 3], gtboxes[:, :, 3])
- np.maximum(dtboxes[:, :, 1], gtboxes[:, :, 1]))
inter = np.maximum(0, iw) * np.maximum(0, ih)
dtarea = (dtboxes[:, :, 2] - dtboxes[:, :, 0]) * (dtboxes[:, :, 3] - dtboxes[:, :, 1])
if if_iou:
gtarea = (gtboxes[:, :, 2] - gtboxes[:, :, 0]) * (gtboxes[:, :, 3] - gtboxes[:, :, 1])
ious = inter / (dtarea + gtarea - inter + eps)
else:
ious = inter / (dtarea + eps)
return ious
def clip_all_boader(self):
def _clip_boundary(boxes, height, width):
assert boxes.shape[-1] >= 4
boxes[:, 0] = np.minimum(np.maximum(boxes[:, 0], 0), width - 1)
boxes[:, 1] = np.minimum(np.maximum(boxes[:, 1], 0), height - 1)
boxes[:, 2] = np.maximum(np.minimum(boxes[:, 2], width), 0)
boxes[:, 3] = np.maximum(np.minimum(boxes[:, 3], height), 0)
return boxes
assert self.dtboxes.shape[-1] >= 4
assert self.gtboxes.shape[-1] >= 4
assert self._width is not None and self._height is not None
if self.eval_mode == 2:
self.dtboxes[:, :4] = _clip_boundary(self.dtboxes[:, :4], self._height, self._width)
self.gtboxes[:, :4] = _clip_boundary(self.gtboxes[:, :4], self._height, self._width)
self.dtboxes[:, 4:8] = _clip_boundary(self.dtboxes[:, 4:8], self._height, self._width)
self.gtboxes[:, 4:8] = _clip_boundary(self.gtboxes[:, 4:8], self._height, self._width)
else:
self.dtboxes = _clip_boundary(self.dtboxes, self._height, self._width)
self.gtboxes = _clip_boundary(self.gtboxes, self._height, self._width)
def load_gt_boxes(self, dict_input, key_name, class_names):
assert key_name in dict_input
if len(dict_input[key_name]) < 1:
return np.empty([0, 5])
head_bbox = []
body_bbox = []
for rb in dict_input[key_name]:
if rb['tag'] in class_names:
body_tag = class_names.index(rb['tag'])
head_tag = 1
else:
body_tag = -1
head_tag = -1
if 'extra' in rb:
if 'ignore' in rb['extra']:
if rb['extra']['ignore'] != 0:
body_tag = -1
head_tag = -1
if 'head_attr' in rb:
if 'ignore' in rb['head_attr']:
if rb['head_attr']['ignore'] != 0:
head_tag = -1
# head_bbox.append(np.hstack((rb['hbox'], head_tag)))
body_bbox.append((*rb['fbox'], body_tag))
# head_bbox = np.array(head_bbox)
# head_bbox[:, 2:4] += head_bbox[:, :2]
body_bbox = np.array(body_bbox)
body_bbox[:, 2:4] += body_bbox[:, :2]
return body_bbox, head_bbox
def load_det_boxes(self, dict_input, key_name, key_box, key_score=None, key_tag=None):
assert key_name in dict_input
if len(dict_input[key_name]) < 1:
return np.empty([0, 5])
else:
assert key_box in dict_input[key_name][0]
if key_score:
assert key_score in dict_input[key_name][0]
if key_tag:
assert key_tag in dict_input[key_name][0]
if key_score:
if key_tag:
bboxes = np.vstack(
[
np.hstack(
(rb[key_box], rb[key_score], rb[key_tag])
) for rb in dict_input[key_name]
]
)
else:
bboxes = np.array([(*rb[key_box], rb[key_score]) for rb in dict_input[key_name]])
else:
if key_tag:
bboxes = np.vstack(
[np.hstack((rb[key_box], rb[key_tag])) for rb in dict_input[key_name]]
)
else:
bboxes = np.vstack([rb[key_box] for rb in dict_input[key_name]])
bboxes[:, 2:4] += bboxes[:, :2]
return bboxes
def compare_voc(self, thres):
"""
:meth: match the detection results with the groundtruth by VOC matching strategy
:param thres: iou threshold
:type thres: float
:return: a list of tuples (dtbox, imageID), in the descending sort of dtbox.score
"""
if self.dtboxes is None:
return list()
dtboxes = self.dtboxes
gtboxes = self.gtboxes if self.gtboxes is not None else list()
dtboxes.sort(key=lambda x: x.score, reverse=True)
gtboxes.sort(key=lambda x: x.ign)
scorelist = list()
for i, dt in enumerate(dtboxes):
maxpos = -1
maxiou = thres
for j, gt in enumerate(gtboxes):
overlap = dt.iou(gt)
if overlap > maxiou:
maxiou = overlap
maxpos = j
if maxpos >= 0:
if gtboxes[maxpos].ign == 0:
gtboxes[maxpos].matched = 1
dtboxes[i].matched = 1
scorelist.append((dt, self.ID))
else:
dtboxes[i].matched = -1
else:
dtboxes[i].matched = 0
scorelist.append((dt, self.ID))
return scorelist
class Database(object):
def __init__(self, gtpath=None, dtpath=None, body_key=None, head_key=None, mode=0):
"""
mode=0: only body; mode=1: only head
"""
self.images = dict()
self.eval_mode = mode
self.loadData(gtpath, body_key, head_key, if_gt=True)
self.loadData(dtpath, body_key, head_key, if_gt=False)
self._ignNum = sum([self.images[i]._ignNum for i in self.images])
self._gtNum = sum([self.images[i]._gtNum for i in self.images])
self._imageNum = len(self.images)
self.scorelist = None
def loadData(self, fpath, body_key=None, head_key=None, if_gt=True):
assert os.path.isfile(fpath), fpath + " does not exist!"
with open(fpath, "r") as f:
lines = f.readlines()
records = [json.loads(line.strip('\n')) for line in lines]
if if_gt:
records = records[0]
for record in records:
self.images[record["ID"]] = Image(self.eval_mode)
self.images[record["ID"]].load(record, body_key, head_key, PERSON_CLASSES, True)
else:
for record in records:
self.images[record["ID"]].load(record, body_key, head_key, PERSON_CLASSES, False)
self.images[record["ID"]].clip_all_boader()
def compare(self, thres=0.5, matching=None):
"""
match the detection results with the groundtruth in the whole database
"""
assert matching is None or matching == "VOC", matching
scorelist = list()
for ID in self.images:
if matching == "VOC":
result = self.images[ID].compare_voc(thres)
else:
result = self.images[ID].compare_caltech(thres)
scorelist.extend(result)
# In the descending sort of dtbox score.
scorelist.sort(key=lambda x: x[0][-1], reverse=True)
self.scorelist = scorelist
def eval_MR(self, ref="CALTECH_-2", fppiX=None, fppiY=None):
"""
evaluate by Caltech-style log-average miss rate
ref: str - "CALTECH_-2"/"CALTECH_-4"
"""
# find greater_than
def _find_gt(lst, target):
for idx, item in enumerate(lst):
if item >= target:
return idx
return len(lst) - 1
assert ref == "CALTECH_-2" or ref == "CALTECH_-4", ref
if ref == "CALTECH_-2":
# CALTECH_MRREF_2: anchor points (from 10^-2 to 1) as in P.Dollar's paper
ref = [0.0100, 0.0178, 0.03160, 0.0562, 0.1000, 0.1778, 0.3162, 0.5623, 1.000]
else:
# CALTECH_MRREF_4: anchor points (from 10^-4 to 1) as in S.Zhang's paper
ref = [0.0001, 0.0003, 0.00100, 0.0032, 0.0100, 0.0316, 0.1000, 0.3162, 1.000]
if self.scorelist is None:
self.compare()
tp, fp = 0.0, 0.0
if fppiX is None or fppiY is None:
fppiX, fppiY = list(), list()
for i, item in enumerate(self.scorelist):
if item[1] == 1:
tp += 1.0
elif item[1] == 0:
fp += 1.0
fn = (self._gtNum - self._ignNum) - tp
recall = tp / (tp + fn)
missrate = 1.0 - recall
fppi = fp / self._imageNum
fppiX.append(fppi)
fppiY.append(missrate)
score = list()
for pos in ref:
argmin = _find_gt(fppiX, pos)
if argmin >= 0:
score.append(fppiY[argmin])
score = np.array(score)
MR = np.exp(np.log(score).mean())
return MR, (fppiX, fppiY)
def eval_AP(self):
"""
:meth: evaluate by average precision
"""
# calculate general ap score
def _calculate_map(recall, precision):
assert len(recall) == len(precision)
area = 0
for i in range(1, len(recall)):
delta_h = (precision[i - 1] + precision[i]) / 2
delta_w = recall[i] - recall[i - 1]
area += delta_w * delta_h
return area
tp, fp, dp = 0.0, 0.0, 0.0
rpX, rpY = list(), list()
total_gt = self._gtNum - self._ignNum
total_images = self._imageNum
fpn = []
dpn = []
recalln = []
thr = []
fppi = []
mr = []
for i, item in enumerate(self.scorelist):
if item[1] == 1:
tp += 1.0
elif item[1] == 0:
fp += 1.0
dp += item[-1]
fn = total_gt - tp
recall = tp / (tp + fn)
precision = tp / (tp + fp)
rpX.append(recall)
rpY.append(precision)
fpn.append(fp)
dpn.append(dp)
recalln.append(tp)
thr.append(item[0][-1])
fppi.append(fp / total_images)
mr.append(1 - recall)
AP = _calculate_map(rpX, rpY)
return AP, recall, (rpX, rpY, thr, fpn, dpn, recalln, fppi, mr)
def computeJaccard(gt_path, dt_path):
dt = load_func(dt_path)
gt = load_func(gt_path)
ji = 0.
for i in range(1, 10):
results = common_process(worker, dt, 1, gt, i * 0.1, 0.5)
ji = max(ji, np.sum([rb['ratio'] for rb in results]) / 4370)
return ji
def load_func(fpath):
assert os.path.exists(fpath)
# with PetrelHelper.open(fpath) as fid:
with open(fpath,'r') as fid:
lines = fid.readlines()
records = [json.loads(line.strip('\n')) for line in lines]
if len(records) == 1: records = records[0]
return records
def worker(result_queue, records, gt, score_thr, bm_thr):
total, eps = len(records), 1e-6
for i in range(total):
record = records[i]
ID = record['ID']
if len(record['dtboxes']) < 1:
result_queue.put_nowait(None)
continue
GT = list(filter(lambda rb:rb['ID'] == ID, gt))
if len(GT) < 1:
result_queue.put_nowait(None)
continue
GT = GT[0]
if 'height' in record and 'width' in record:
height, width = record['height'], record['width']
else:
height, width = GT['height'], GT['width']
flags = np.array([is_ignore(rb) for rb in GT['gtboxes']])
rows = np.where(~flags)[0]
ignores = np.where(flags)[0]
gtboxes = np.vstack([GT['gtboxes'][j]['fbox'] for j in rows])
gtboxes = recover_func(gtboxes)
gtboxes = clip_boundary(gtboxes, height, width)
if ignores.size:
ignores = np.vstack([GT['gtboxes'][j]['fbox'] for j in ignores])
ignores = recover_func(ignores)
ignores = clip_boundary(ignores, height, width)
dtboxes = np.vstack([np.hstack([rb['box'], rb['score']]) for rb in record['dtboxes']])
dtboxes = recover_func(dtboxes)
dtboxes = clip_boundary(dtboxes, height, width)
rows = np.where(dtboxes[:,-1]> score_thr)[0]
dtboxes = dtboxes[rows,...]
matches = compute_JC(dtboxes, gtboxes, bm_thr)
dt_ign, gt_ign = 0, 0
if ignores.size:
indices = np.array([j for (j,_) in matches])
dt_ign = get_ignores(indices, dtboxes, ignores, bm_thr)
indices = np.array([j for (_,j) in matches])
gt_ign = get_ignores(indices, gtboxes, ignores, bm_thr)
k = len(matches)
m = gtboxes.shape[0] - gt_ign
n = dtboxes.shape[0] - dt_ign
ratio = k / (m + n -k + eps)
recall = k / (m + eps)
cover = k / (n + eps)
noise = 1 - cover
result_dict = dict(ID = ID, ratio = ratio, recall = recall , noise = noise ,
cover = cover, k= k ,n = n, m = m)
result_queue.put_nowait(result_dict)
def common_process(func, data, nr_procs, *args):
total = len(data)
stride = math.ceil(total / nr_procs)
result_queue = Queue(10000)
results, procs = [], []
tqdm.monitor_interval = 0
pbar = tqdm(total = total, leave = False, ascii = True)
for i in range(nr_procs):
start = i*stride
end = np.min([start+stride,total])
sample_data = data[start:end]
# import pdb; pdb.set_trace()
# func(result_queue, sample_data, *args)
p = Process(target= func,args=(result_queue, sample_data, *args))
p.start()
procs.append(p)
for i in range(total):
t = result_queue.get()
if t is None:
pbar.update(1)
continue
results.append(t)
pbar.update()
for p in procs:
p.join()
return results
def recover_func(bboxes):
assert bboxes.shape[1]>=4
bboxes[:, 2:4] += bboxes[:,:2]
return bboxes
def clip_boundary(dtboxes,height,width):
assert dtboxes.shape[-1]>=4
dtboxes[:,0] = np.minimum(np.maximum(dtboxes[:,0],0), width - 1)
dtboxes[:,1] = np.minimum(np.maximum(dtboxes[:,1],0), height - 1)
dtboxes[:,2] = np.maximum(np.minimum(dtboxes[:,2],width), 0)
dtboxes[:,3] = np.maximum(np.minimum(dtboxes[:,3],height), 0)
return dtboxes
def get_ignores(indices, boxes, ignores, ioa_thr):
indices = list(set(np.arange(boxes.shape[0])) - set(indices))
rboxes = boxes[indices, :]
ioas = compute_ioa_matrix(rboxes, ignores)
ioas = np.max(ioas, axis = 1)
rows = np.where(ioas > ioa_thr)[0]
return rows.size
def compute_ioa_matrix(dboxes: np.ndarray, gboxes: np.ndarray):
assert dboxes.shape[-1] >= 4 and gboxes.shape[-1] >= 4
N, K = dboxes.shape[0], gboxes.shape[0]
eps = 1e-6
dtboxes = np.tile(np.expand_dims(dboxes, axis = 1), (1, K, 1))
gtboxes = np.tile(np.expand_dims(gboxes, axis = 0), (N, 1, 1))
iw = np.minimum(dtboxes[:,:,2], gtboxes[:,:,2]) - np.maximum(dtboxes[:,:,0], gtboxes[:,:,0])
ih = np.minimum(dtboxes[:,:,3], gtboxes[:,:,3]) - np.maximum(dtboxes[:,:,1], gtboxes[:,:,1])
inter = np.maximum(0, iw) * np.maximum(0, ih)
dtarea = np.maximum(dtboxes[:,:,2] - dtboxes[:,:,0], 0) * np.maximum(dtboxes[:,:,3] - dtboxes[:,:,1], 0)
ioas = inter / (dtarea + eps)
return ioas
def is_ignore(record):
flag = False
if 'extra' in record:
if 'ignore' in record['extra']:
flag = True if record['extra']['ignore'] else False
return flag
def compute_iou_matrix(dboxes:np.ndarray, gboxes:np.ndarray):
assert dboxes.shape[-1] >= 4 and gboxes.shape[-1] >= 4
eps = 1e-6
N, K = dboxes.shape[0], gboxes.shape[0]
dtboxes = np.tile(np.expand_dims(dboxes, axis = 1), (1, K, 1))
gtboxes = np.tile(np.expand_dims(gboxes, axis = 0), (N, 1, 1))
iw = np.minimum(dtboxes[:,:,2], gtboxes[:,:,2]) - np.maximum(dtboxes[:,:,0], gtboxes[:,:,0])
ih = np.minimum(dtboxes[:,:,3], gtboxes[:,:,3]) - np.maximum(dtboxes[:,:,1], gtboxes[:,:,1])
inter = np.maximum(0, iw) * np.maximum(0, ih)
dtarea = (dtboxes[:,:,2] - dtboxes[:,:,0]) * (dtboxes[:,:,3] - dtboxes[:,:,1])
gtarea = (gtboxes[:,:,2] - gtboxes[:,:,0]) * (gtboxes[:,:,3] - gtboxes[:,:,1])
ious = inter / (dtarea + gtarea - inter + eps)
return ious
def compute_lap(dtboxes, gtboxes, thr):
eps = 1e-7
n, k = dtboxes.shape[0], gtboxes.shape[0]
if k + n < 2:
m, n = np.array([]), np.array([])
return m, n
overlaps = compute_iou_matrix(dtboxes, gtboxes)
if n < 2:
cols = np.argmax(overlaps, axis = 1)
rows = np.array([0])
m, n = (rows, cols) if thr - overlaps[rows, cols] < eps else (np.array([]), np.array([]))
return m, n
if k < 2:
rows = np.argmax(overlaps, axis = 0)
cols = np.array([0])
m,n = (rows, cols) if thr - overlaps[rows, cols] < eps else (np.array([]), np.array([]))
return m, n
ious = overlaps * (overlaps >= thr)
matches = minimumWeightMatching(-ious)
m, n = np.array([i for i, _ in matches]).astype(np.int32), np.array([i for _, i in matches]).astype(np.int32)
indice = np.where(overlaps[m, n] < thr)[0]
if indice.size >= m.size:
m, n = np.array([]), np.array([])
else:
index = np.array(list(set(np.arange(m.size)) - set(indice))).astype(np.int)
m, n = m[index], n[index]
return m, n
def minimumWeightMatching(costSet : np.ndarray) -> list:
'''
Computes a minimum-weight matching in a bipartite graph
(A union B, E).
costSet:
An (m x n)-matrix of real values, where costSet[i, j]
is the cost of matching the i:th vertex in A to the j:th
vertex of B. A value of numpy.inf is allowed, and is
interpreted as missing the (i, j)-edge.
returns:
A minimum-weight matching given as a list of pairs (i, j),
denoting that the i:th vertex of A be paired with the j:th
vertex of B.
'''
m, n = costSet.shape
nMax = max(m, n)
# Since the choice of infinity blocks later choices for that index,
# it is important that the cost matrix is square, so there
# is enough space to shift the choices for infinity to the unused
# part of the cost-matrix.
costSet_ = np.full((nMax, nMax), np.inf)
mask = costSet < 0
costSet_[:m, :n][mask] = costSet[mask]
assert costSet_.shape[0] == costSet_.shape[1]
# We allow a cost to be infinity. Since scipy does not
# support this, we use a workaround. We represent infinity
# by M = 2 * maximum cost + 1. The point is to choose a distinct
# value, greater than any other cost, so that choosing an
# infinity-pair is the last resort. The 2 times is for large
# values for which x + 1 == x in floating point. The plus 1
# is for zero, for which 2 x == x.
try:
practicalInfinity = 2 * costSet[costSet < np.inf].max() + 10
except ValueError:
# This is thrown when the indexing set is empty;
# then all elements are infinities.
practicalInfinity = 1
# Replace infinitites with our representation.
costSet_[costSet_ == np.inf] = practicalInfinity
# Find a pairing of minimum total cost between matching second-level contours.
iSet, jSet = linear_sum_assignment(costSet_)
assert len(iSet) == len(jSet)
# Return only pairs with finite cost.
indices = [(iSet[k], jSet[k])
for k in range(len(iSet))
if costSet_[iSet[k], jSet[k]] != practicalInfinity]
return indices
def compute_JC(detection:np.ndarray, gt:np.ndarray, iou_thresh:np.ndarray):
rows, cols = compute_lap(detection, gt, iou_thresh)
return [(i, j) for i, j in zip(rows, cols)]
|