File size: 6,638 Bytes
345ee20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import argparse
import math
import os, sys
import random
import datetime
import time
from typing import List
import json
import logging
import numpy as np
from copy import deepcopy
from .seg_tester_dev import DatasetEvaluator

import torch
import torch.nn as nn
import torch.nn.parallel
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import torch.distributed as dist

import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import pickle
class PedAttrEvaluator(DatasetEvaluator):

    def __init__(
        self,
        dataset_name,
        config,
        distributed=True,
        output_dir=None,
    ):

        self._logger = logging.getLogger(__name__)

        self._dataset_name = dataset_name
        self._distributed = distributed
        self._output_dir = output_dir

        self._cpu_device = torch.device("cpu")
        # self.threshold = 0.5
        self.threshold = config.tester.kwargs.threshold
        # import pdb;pdb.set_trace()

    def reset(self):
        self.gt_label = []
        self.preds_probs = []

    def process(self, inputs, outputs):
        gt_label = inputs['label']
        gt_label[gt_label == -1] = 0
        preds_probs = outputs['logit'].sigmoid()
        self.gt_label.append(gt_label)
        self.preds_probs.append(preds_probs)

    @staticmethod
    def all_gather(data, group=0):
        assert dist.get_world_size() == 1, f"distributed eval unsupported yet, uncertain if we can use torch.dist with link jointly"
        if dist.get_world_size() == 1:
            return [data]

        world_size = dist.get_world_size()
        tensors_gather = [torch.ones_like(data) for _ in range(world_size)]
        dist.allgather(tensors_gather, data, group=group)
        return tensors_gather

    def evaluate(self):
        gt_label = torch.cat(self.gt_label, dim=0)
        preds_probs = torch.cat(self.preds_probs, dim=0)
        
        if self._distributed:
            torch.cuda.synchronize()

            gt_label = self.all_gather(gt_label)
            preds_probs = self.all_gather(preds_probs)

            if dist.get_rank() != 0:
                return

        gt_label = torch.cat(gt_label, dim=0)
        preds_probs = torch.cat(preds_probs, dim=0)
        preds_probs = preds_probs.cpu().numpy()
        gt_label = gt_label.cpu().numpy()
        
        # preds_probs_dict = {}
        # preds_probs_dict['preds_probs'] = preds_probs
        # f = open('/mnt/petrelfs/tangshixiang/hwz/humanbenchv2/experiments/v2_attribute/text_before_full_rap_mult_4e4_4e7_weight5_v1.pkl', 'wb')
        # pickle.dump(preds_probs_dict, f)
        
        pred_label = preds_probs > self.threshold

        eps = 1e-20
        result = {}

        ###############################
        # label metrics
        # TP + FN
        gt_pos = np.sum((gt_label == 1), axis=0).astype(float)
        # TN + FP
        gt_neg = np.sum((gt_label == 0), axis=0).astype(float)
        # TP
        true_pos = np.sum((gt_label == 1) * (pred_label == 1), axis=0).astype(float)
        # TN
        true_neg = np.sum((gt_label == 0) * (pred_label == 0), axis=0).astype(float)
        # FP
        false_pos = np.sum(((gt_label == 0) * (pred_label == 1)), axis=0).astype(float)
        # FN
        false_neg = np.sum(((gt_label == 1) * (pred_label == 0)), axis=0).astype(float)

        label_pos_recall = 1.0 * true_pos / (gt_pos + eps)  # true positive
        label_neg_recall = 1.0 * true_neg / (gt_neg + eps)  # true negative
        # mean accuracy
        label_ma = (label_pos_recall + label_neg_recall) / 2

        result['label_pos_recall'] = label_pos_recall
        result['label_neg_recall'] = label_neg_recall
        result['label_prec'] = true_pos / (true_pos + false_pos + eps)
        result['label_acc'] = true_pos / (true_pos + false_pos + false_neg + eps)
        result['label_f1'] = 2 * result['label_prec'] * result['label_pos_recall'] / (
                result['label_prec'] + result['label_pos_recall'] + eps)

        result['label_ma'] = label_ma
        result['ma'] = np.mean(label_ma)

        ################
        # instance metrics
        gt_pos = np.sum((gt_label == 1), axis=1).astype(float)
        true_pos = np.sum((pred_label == 1), axis=1).astype(float)
        # true positive
        intersect_pos = np.sum((gt_label == 1) * (pred_label == 1), axis=1).astype(float)
        # IOU
        union_pos = np.sum(((gt_label == 1) + (pred_label == 1)), axis=1).astype(float)

        instance_acc = intersect_pos / (union_pos + eps)
        instance_prec = intersect_pos / (true_pos + eps)
        instance_recall = intersect_pos / (gt_pos + eps)
        instance_f1 = 2 * instance_prec * instance_recall / (instance_prec + instance_recall + eps)

        instance_acc = np.mean(instance_acc)
        instance_prec = np.mean(instance_prec)
        instance_recall = np.mean(instance_recall)
        instance_f1 = np.mean(instance_f1)

        result['instance_acc'] = instance_acc
        result['instance_prec'] = instance_prec
        result['instance_recall'] = instance_recall
        result['instance_f1'] = instance_f1

        result['error_num'], result['fn_num'], result['fp_num'] = false_pos + false_neg, false_neg, false_pos

        result['pos_recall'] = np.mean(label_pos_recall)
        result['neg_recall'] = np.mean(label_neg_recall)
        return result

class PedAttrMAEEvaluator(PedAttrEvaluator):
    def __init__(self, dataset_name, config, distributed=True, output_dir=None):
        super(PedAttrMAEEvaluator, self).__init__(dataset_name=dataset_name, config=config,
                                                  distributed=distributed, output_dir=output_dir)

    def process(self, inputs, outputs):
        # TODO: choose using a more readable way
        # import pdb;pdb.set_trace()
        try:
            gt_label = inputs['label'][:,inputs['attr_begin'][0]:inputs['attr_end'][0]]
        except:
            gt_label = inputs['label']
        gt_label[gt_label==-1] = 0
        try:
            preds_probs = outputs['pred']['logit'].sigmoid()[:,inputs['attr_begin'][0]:inputs['attr_end'][0]]
        except:
            preds_probs = outputs['pred']['logit'].sigmoid()
        self.gt_label.append(gt_label)
        self.preds_probs.append(preds_probs)
        # gt_label = inputs['label'][:,inputs['attr_begin'][0]:inputs['attr_end'][0]]
        # gt_label[gt_label==-1] = 0
        # preds_probs = outputs['pred']['logit'].sigmoid()[:,inputs['attr_begin'][0]:inputs['attr_end'][0]]
        # self.gt_label.append(gt_label)
        # self.preds_probs.append(preds_probs)