File size: 8,286 Bytes
345ee20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import math
import torch
from torch.optim.optimizer import Optimizer

from typing import Any, Callable, Dict, Iterable, Optional, Tuple, Union
from torch import Tensor

Params = Union[Iterable[Tensor], Iterable[Dict[str, Any]]]
LossClosure = Callable[[], float]
OptLossClosure = Optional[LossClosure]
Betas2 = Tuple[float, float]
State = Dict[str, Any]
OptFloat = Optional[float]
Nus2 = Tuple[float, float]
Eps2 = Tuple[float, float]
ParamGroup = Dict[str, Any]


class Adafactor_dev(Optimizer):
    """Implements Adafactor algorithm.

    It has been proposed in: `Adafactor: Adaptive Learning Rates with
    Sublinear Memory Cost`__.

    Arguments:
        params: iterable of parameters to optimize or dicts defining
            parameter groups
        lr: external learning rate (default: None)
        eps2: regularization constans for square gradient
            and parameter scale respectively (default: (1e-30, 1e-3))
        clip_threshold: threshold of root mean square of
            final gradient update (default: 1.0)
        decay_rate: coefficient used to compute running averages of square
            gradient (default: -0.8)
        beta1: coefficient used for computing running averages of gradient
            (default: None)
        weight_decay: weight decay (L2 penalty) (default: 0)
        scale_parameter: if true, learning rate is scaled by root mean square
            of parameter (default: True)
        relative_step: if true, time-dependent learning rate is computed
            instead of external learning rate (default: True)
        warmup_init: time-dependent learning rate computation depends on
            whether warm-up initialization is being used (default: False)

    Example:
        >>> import torch_optimizer as optim
        >>> optimizer = optim.Adafactor(model.parameters())
        >>> optimizer.zero_grad()
        >>> loss_fn(model(input), target).backward()
        >>> optimizer.step()

    __ https://arxiv.org/abs/1804.04235

    Note:
        Reference code: https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py  # noqa
    """

    def __init__(
        self,
        params: Params,
        lr: OptFloat = None,
        eps2: Eps2 = (1e-30, 1e-3),
        clip_threshold: float = 1.0,
        decay_rate: float = -0.8,
        beta1: OptFloat = None,
        weight_decay: float = 0.0,
        scale_parameter: bool = True,
        relative_step: bool = True,
        warmup_init: bool = False,
        clip_beta2: Any = False,
    ):
        if lr is not None and lr <= 0.0:
            raise ValueError('Invalid learning rate: {}'.format(lr))
        if weight_decay < 0.0:
            raise ValueError(
                'Invalid weight_decay value: {}'.format(weight_decay)
            )

        defaults = dict(
            lr=lr,
            eps2=eps2,
            clip_threshold=clip_threshold,
            decay_rate=decay_rate,
            beta1=beta1,
            weight_decay=weight_decay,
            scale_parameter=scale_parameter,
            relative_step=relative_step,
            warmup_init=warmup_init,
            clip_beta2=clip_beta2,
        )
        super(Adafactor_dev, self).__init__(params, defaults)

    def _get_lr(self, param_group: ParamGroup, param_state: State) -> float:
        rel_step_sz = param_group['lr']
        if param_group['relative_step']:
            min_step = (
                1e-6 * param_state['step']
                if param_group['warmup_init']
                else 1e-2
            )
            rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state['step']))
        param_scale = 1.0
        if param_group['scale_parameter']:
            param_scale = max(param_group['eps2'][1], param_state['RMS'])
        return param_scale * rel_step_sz

    def _get_options(
        self, param_group: ParamGroup, param_shape: Tuple[int, ...]
    ) -> Tuple[bool, bool]:
        factored = len(param_shape) >= 2
        use_first_moment = param_group['beta1'] is not None
        return factored, use_first_moment

    def _rms(self, tensor: torch.Tensor) -> float:
        return tensor.norm(2) / (tensor.numel() ** 0.5)

    def _approx_sq_grad(
        self,
        exp_avg_sq_row: torch.Tensor,
        exp_avg_sq_col: torch.Tensor,
        output: torch.Tensor,
    ) -> None:
        r_factor = (
            (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True))
            .rsqrt_()
            .unsqueeze(-1)
        )
        c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
        torch.mul(r_factor, c_factor, out=output)

    def step(self, closure: OptLossClosure = None) -> OptFloat:
        r"""Performs a single optimization step.

        Arguments:
            closure: A closure that reevaluates the model and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError(
                        'Adafactor does not support sparse gradients.'
                    )

                state = self.state[p]
                grad_shape = grad.shape

                factored, use_first_moment = self._get_options(
                    group, grad_shape
                )
                # State Initialization
                if len(state) == 0:
                    state['step'] = 0

                    if use_first_moment:
                        # Exponential moving average of gradient values
                        state['exp_avg'] = torch.zeros_like(
                            grad, memory_format=torch.preserve_format
                        )
                    if factored:
                        state['exp_avg_sq_row'] = torch.zeros(
                            grad_shape[:-1]
                        ).type_as(grad)
                        state['exp_avg_sq_col'] = torch.zeros(
                            grad_shape[:-2] + grad_shape[-1:]
                        ).type_as(grad)
                    else:
                        state['exp_avg_sq'] = torch.zeros_like(
                            grad, memory_format=torch.preserve_format
                        )

                    state['RMS'] = 0

                state['step'] += 1
                state['RMS'] = self._rms(p.data)
                lr = self._get_lr(group, state)

                beta2t = 1.0 - math.pow(state['step'], group['decay_rate'])

                if group['clip_beta2'] != False:
                    beta2t = min(beta2t, group['clip_beta2'])

                update = (grad ** 2) + group['eps2'][0]
                if factored:
                    exp_avg_sq_row = state['exp_avg_sq_row']
                    exp_avg_sq_col = state['exp_avg_sq_col']

                    exp_avg_sq_row.mul_(beta2t).add_(
                        update.mean(dim=-1), alpha=1.0 - beta2t
                    )
                    exp_avg_sq_col.mul_(beta2t).add_(
                        update.mean(dim=-2), alpha=1.0 - beta2t
                    )

                    # Approximation of exponential moving average of square
                    # of gradient
                    self._approx_sq_grad(
                        exp_avg_sq_row, exp_avg_sq_col, update
                    )
                    update.mul_(grad)
                else:
                    exp_avg_sq = state['exp_avg_sq']

                    exp_avg_sq.mul_(beta2t).add_(update, alpha=1.0 - beta2t)
                    torch.rsqrt(exp_avg_sq, out=update).mul_(grad)

                update.div_(
                    max(1.0, self._rms(update) / group['clip_threshold'])
                )
                update.mul_(lr)

                if use_first_moment:
                    exp_avg = state['exp_avg']
                    exp_avg.mul_(group['beta1']).add_(
                        update, alpha=1 - group['beta1']
                    )
                    update = exp_avg

                if group['weight_decay'] != 0:
                    p.data.add_(p.data, alpha=-group['weight_decay'] * lr)

                p.data.add_(-update)

        return loss