File size: 8,286 Bytes
345ee20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import math
import torch
from torch.optim.optimizer import Optimizer
from typing import Any, Callable, Dict, Iterable, Optional, Tuple, Union
from torch import Tensor
Params = Union[Iterable[Tensor], Iterable[Dict[str, Any]]]
LossClosure = Callable[[], float]
OptLossClosure = Optional[LossClosure]
Betas2 = Tuple[float, float]
State = Dict[str, Any]
OptFloat = Optional[float]
Nus2 = Tuple[float, float]
Eps2 = Tuple[float, float]
ParamGroup = Dict[str, Any]
class Adafactor_dev(Optimizer):
"""Implements Adafactor algorithm.
It has been proposed in: `Adafactor: Adaptive Learning Rates with
Sublinear Memory Cost`__.
Arguments:
params: iterable of parameters to optimize or dicts defining
parameter groups
lr: external learning rate (default: None)
eps2: regularization constans for square gradient
and parameter scale respectively (default: (1e-30, 1e-3))
clip_threshold: threshold of root mean square of
final gradient update (default: 1.0)
decay_rate: coefficient used to compute running averages of square
gradient (default: -0.8)
beta1: coefficient used for computing running averages of gradient
(default: None)
weight_decay: weight decay (L2 penalty) (default: 0)
scale_parameter: if true, learning rate is scaled by root mean square
of parameter (default: True)
relative_step: if true, time-dependent learning rate is computed
instead of external learning rate (default: True)
warmup_init: time-dependent learning rate computation depends on
whether warm-up initialization is being used (default: False)
Example:
>>> import torch_optimizer as optim
>>> optimizer = optim.Adafactor(model.parameters())
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
__ https://arxiv.org/abs/1804.04235
Note:
Reference code: https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py # noqa
"""
def __init__(
self,
params: Params,
lr: OptFloat = None,
eps2: Eps2 = (1e-30, 1e-3),
clip_threshold: float = 1.0,
decay_rate: float = -0.8,
beta1: OptFloat = None,
weight_decay: float = 0.0,
scale_parameter: bool = True,
relative_step: bool = True,
warmup_init: bool = False,
clip_beta2: Any = False,
):
if lr is not None and lr <= 0.0:
raise ValueError('Invalid learning rate: {}'.format(lr))
if weight_decay < 0.0:
raise ValueError(
'Invalid weight_decay value: {}'.format(weight_decay)
)
defaults = dict(
lr=lr,
eps2=eps2,
clip_threshold=clip_threshold,
decay_rate=decay_rate,
beta1=beta1,
weight_decay=weight_decay,
scale_parameter=scale_parameter,
relative_step=relative_step,
warmup_init=warmup_init,
clip_beta2=clip_beta2,
)
super(Adafactor_dev, self).__init__(params, defaults)
def _get_lr(self, param_group: ParamGroup, param_state: State) -> float:
rel_step_sz = param_group['lr']
if param_group['relative_step']:
min_step = (
1e-6 * param_state['step']
if param_group['warmup_init']
else 1e-2
)
rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state['step']))
param_scale = 1.0
if param_group['scale_parameter']:
param_scale = max(param_group['eps2'][1], param_state['RMS'])
return param_scale * rel_step_sz
def _get_options(
self, param_group: ParamGroup, param_shape: Tuple[int, ...]
) -> Tuple[bool, bool]:
factored = len(param_shape) >= 2
use_first_moment = param_group['beta1'] is not None
return factored, use_first_moment
def _rms(self, tensor: torch.Tensor) -> float:
return tensor.norm(2) / (tensor.numel() ** 0.5)
def _approx_sq_grad(
self,
exp_avg_sq_row: torch.Tensor,
exp_avg_sq_col: torch.Tensor,
output: torch.Tensor,
) -> None:
r_factor = (
(exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True))
.rsqrt_()
.unsqueeze(-1)
)
c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
torch.mul(r_factor, c_factor, out=output)
def step(self, closure: OptLossClosure = None) -> OptFloat:
r"""Performs a single optimization step.
Arguments:
closure: A closure that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
'Adafactor does not support sparse gradients.'
)
state = self.state[p]
grad_shape = grad.shape
factored, use_first_moment = self._get_options(
group, grad_shape
)
# State Initialization
if len(state) == 0:
state['step'] = 0
if use_first_moment:
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(
grad, memory_format=torch.preserve_format
)
if factored:
state['exp_avg_sq_row'] = torch.zeros(
grad_shape[:-1]
).type_as(grad)
state['exp_avg_sq_col'] = torch.zeros(
grad_shape[:-2] + grad_shape[-1:]
).type_as(grad)
else:
state['exp_avg_sq'] = torch.zeros_like(
grad, memory_format=torch.preserve_format
)
state['RMS'] = 0
state['step'] += 1
state['RMS'] = self._rms(p.data)
lr = self._get_lr(group, state)
beta2t = 1.0 - math.pow(state['step'], group['decay_rate'])
if group['clip_beta2'] != False:
beta2t = min(beta2t, group['clip_beta2'])
update = (grad ** 2) + group['eps2'][0]
if factored:
exp_avg_sq_row = state['exp_avg_sq_row']
exp_avg_sq_col = state['exp_avg_sq_col']
exp_avg_sq_row.mul_(beta2t).add_(
update.mean(dim=-1), alpha=1.0 - beta2t
)
exp_avg_sq_col.mul_(beta2t).add_(
update.mean(dim=-2), alpha=1.0 - beta2t
)
# Approximation of exponential moving average of square
# of gradient
self._approx_sq_grad(
exp_avg_sq_row, exp_avg_sq_col, update
)
update.mul_(grad)
else:
exp_avg_sq = state['exp_avg_sq']
exp_avg_sq.mul_(beta2t).add_(update, alpha=1.0 - beta2t)
torch.rsqrt(exp_avg_sq, out=update).mul_(grad)
update.div_(
max(1.0, self._rms(update) / group['clip_threshold'])
)
update.mul_(lr)
if use_first_moment:
exp_avg = state['exp_avg']
exp_avg.mul_(group['beta1']).add_(
update, alpha=1 - group['beta1']
)
update = exp_avg
if group['weight_decay'] != 0:
p.data.add_(p.data, alpha=-group['weight_decay'] * lr)
p.data.add_(-update)
return loss
|