File size: 16,804 Bytes
40b1723
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ecd363f6cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ecd363f8e00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697122620512600546, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAs7y7PJM5Vz4Zyq49ZeiNv3anH77s0q49972XPxNcaz7s0q49k6INvzR5uT/u1a49lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAovTlPhwv3r/xW3Y/0OPYvq6fWr4fUoq/8rmzvac0uT8fUoq/4P7HuIQGtD5oKic/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAAC1VW6+86W4OhGoID++xxU/KLaSv3o3Vz+z8T2/s7y7PJM5Vz4Zyq49eGOsu84x4bzPxwC8Y6HXOh5c7DudWBs9RttLuiEqjbzf0rU7CV9BPWU0RL/UC1m/44iBPpEmpD7Z0sU/vvE9v2Xojb92px++7NKuPTm7tLuSg+C8ldO6u4U8MDtRB9w7nVgbPXHYS7o1Ko28cljZO4lz673SNYA/AowpPgtFmr9oHNc/cWicvi/pij/3vZc/E1xrPuzSrj0WurS7AITgvAnQH7vSNTA7cQjcO51YGz102Eu6NSqNvIlM2TungKu+/cDFPisFeT6EeVo+DL6KPvgYTTyzLsU/k6INvzR5uT/u1a49C8m8u/Td4LzQw5W7joYbO7Ck+judWBs9fdlLuhQqjbxdsc07lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.02291713  0.21018057  0.08534641]\n [-1.1086546  -0.15591225  0.08536324]\n [ 1.1854848   0.22984342  0.08536324]\n [-0.55326194  1.4490113   0.08536898]]", "desired_goal": "[[ 4.4913203e-01 -1.7358127e+00  9.6234041e-01]\n [-4.2361307e-01 -2.1349975e-01 -1.0806311e+00]\n [-8.7757006e-02  1.4469193e+00 -1.0806311e+00]\n [-9.5365336e-05  3.5161221e-01  6.5299082e-01]]", "observation": "[[-2.3274882e-01  1.4087543e-03  6.2756449e-01  5.8507907e-01\n  -1.1461840e+00  8.4069026e-01 -7.4196929e-01  2.2917127e-02\n   2.1018057e-01  8.5346408e-02 -5.2608810e-03 -2.7489569e-02\n  -7.8601381e-03  1.6451295e-03  7.2131297e-03  3.7926305e-02\n  -7.7765097e-04 -1.7232003e-02  5.5488194e-03]\n [ 4.7209773e-02 -7.6642448e-01 -8.4783673e-01  2.5299749e-01\n   3.2060674e-01  1.5454971e+00 -7.4196994e-01 -1.1086546e+00\n  -1.5591225e-01  8.5363239e-02 -5.5154827e-03 -2.7406488e-02\n  -5.7014921e-03  2.6891541e-03  6.7147394e-03  3.7926305e-02\n  -7.7760877e-04 -1.7232040e-02  6.6328580e-03]\n [-1.1496646e-01  1.0016425e+00  1.6557315e-01 -1.2052320e+00\n   1.6805544e+00 -3.0548432e-01  1.0852412e+00  1.1854848e+00\n   2.2984342e-01  8.5363239e-02 -5.5153472e-03 -2.7406693e-02\n  -2.4385473e-03  2.6887548e-03  6.7148735e-03  3.7926305e-02\n  -7.7760895e-04 -1.7232040e-02  6.6314382e-03]\n [-3.3496591e-01  3.8623801e-01  2.4318378e-01  2.1335417e-01\n   2.7098119e-01  1.2518160e-02  1.5404876e+00 -5.5326194e-01\n   1.4490113e+00  8.5368976e-02 -5.7612709e-03 -2.7449585e-02\n  -4.5704618e-03  2.3731324e-03  7.6490268e-03  3.7926305e-02\n  -7.7762437e-04 -1.7231978e-02  6.2772469e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAADs6evWGVID0K16M8qktNvOD7jT0K16M8EQDSvTRi4T0K16M8gbE2uwr0sLwK16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAflraPXXJNTzhwY89FEg+vEjG8r3cYhw9A189vRpXfD0K16M89qfzvG1J970K16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAADs6evWGVID0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAKpLTbzg+409CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAARANK9NGLhPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAgbE2uwr0sLwK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.07754146  0.03920496  0.02      ]\n [-0.01253025  0.06932807  0.02      ]\n [-0.10253919  0.11005059  0.02      ]\n [-0.00278768 -0.02160074  0.02      ]]", "desired_goal": "[[ 0.10661791  0.01109539  0.07019401]\n [-0.01161386 -0.11854225  0.03818022]\n [-0.04623319  0.0616065   0.02      ]\n [-0.02974318 -0.12074552  0.02      ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00 -7.7541456e-02\n   3.9204959e-02  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00 -1.2530247e-02\n   6.9328070e-02  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00 -1.0253919e-01\n   1.1005059e-01  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00  0.0000000e+00 -2.7876797e-03\n  -2.1600742e-02  2.0000000e-02  0.0000000e+00 -0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00  0.0000000e+00\n   0.0000000e+00  0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CnbYv5YYBOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnbaN9QXQ/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnbd2Rq46PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnba14gRsedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnboHSF49pdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CnboZwn6VMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnbpqXOW0JdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnbtSn+AEudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnbqNBnjABdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnb3wXAM2FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnb5EYO2AodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnb8bu+h4/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnb5dDhLoPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CncHEdvKlpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CncIlHavicdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CncMUSAYpEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CncJRRVIZqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CncW1HvttzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CncYImXw9adX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CncYfjsD4hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cncbv+XJHRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CncYtYB/7SdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CncmWCVbA2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cncn+PBBRidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cncrlrl/6PdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnconPVurIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnc2JvHcUNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnc3gJC0F9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnc6yKvV3EdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnc3qNhmXgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CndFMDnvDxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CndGaGHpKSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CndJzoEB8ydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CndG25Yoy9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CndUYeDFqBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CndVrZJ04jdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CndY/XPJJYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CndWAdXDFZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CndjkPDpC8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CndlGMfigkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CndoMMqjJudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CndlIpH7P6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CndyvxhDw6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnd0PStvGZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnd3GoR7JGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnd0GaYu01dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CneBtw71ZldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CneDGAskIHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CneGGdy1eCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CneDJxvNu+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CneQvtD2J0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CneSaVUuL8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CneVeVC5VfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CneSbDVH4HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnef845tFbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnehZUkv9MdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnekMfJV81dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnehLy+YdAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cneu2RRuTBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnewczImw8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnezp5/smfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnewsHKOktdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cne+NdZ7ojdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cne/pDNQj2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnfCn0btJGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cne/kgGKQ8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnfNHzxwyZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnfOmxUvPDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnfSU65oXbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnfPZOJtSAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnfc+0G/vfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnfeXHzYmLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnfjJTVDrrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnfg9DhLoPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnfvAIQe3hdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnf07SJCSidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnf9LI5o4/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnf66gVXV9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CngI5z5oGqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CngPIexOcldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CngY0eMhoudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CngW9jPOY6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnglMk6cRUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CngrnZ00WNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cng0jwhGH6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CngyyrHU+cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhBAGjbi7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhHyk9ECvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhQ1CojwAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhODhky1vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhbmP5pJxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhdHAymALdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnhf3O4XoDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnhc1Cw8nvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhqZpi7TVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhsdSVGCqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhvzAFgUldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CnhswkX1rZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnh6UBwMpgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cnh8KBd2PldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True]", "bounded_above": "[ True  True  True  True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}