|
|
|
|
|
|
|
|
|
|
|
|
|
import copy
|
|
|
|
from transformers import AutoConfig, LlamaConfig, Qwen2Config
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
from transformers.utils import logging
|
|
|
|
from .configuration_intern_vit import InternVisionConfig
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class InternVLChatConfig(PretrainedConfig):
|
|
model_type = 'internvl_chat'
|
|
is_composition = True
|
|
|
|
def __init__(
|
|
self,
|
|
vision_config=None,
|
|
llm_config=None,
|
|
use_backbone_lora=0,
|
|
use_llm_lora=0,
|
|
select_layer=-1,
|
|
force_image_size=None,
|
|
downsample_ratio=0.5,
|
|
template=None,
|
|
dynamic_image_size=False,
|
|
use_thumbnail=False,
|
|
ps_version='v1',
|
|
min_dynamic_patch=1,
|
|
max_dynamic_patch=6,
|
|
**kwargs):
|
|
super().__init__(**kwargs)
|
|
|
|
if vision_config is None:
|
|
vision_config = {}
|
|
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
|
|
|
|
if llm_config is None:
|
|
llm_config = {}
|
|
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
|
|
|
|
self.vision_config = InternVisionConfig(**vision_config)
|
|
if llm_config['architectures'][0] == 'LlamaForCausalLM':
|
|
self.llm_config = LlamaConfig(**llm_config)
|
|
elif llm_config['architectures'][0] == 'Qwen2ForCausalLM':
|
|
self.llm_config = Qwen2Config(**llm_config)
|
|
else:
|
|
raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
|
|
self.use_backbone_lora = use_backbone_lora
|
|
self.use_llm_lora = use_llm_lora
|
|
self.select_layer = select_layer
|
|
self.force_image_size = force_image_size
|
|
self.downsample_ratio = downsample_ratio
|
|
self.template = template
|
|
self.dynamic_image_size = dynamic_image_size
|
|
self.use_thumbnail = use_thumbnail
|
|
self.ps_version = ps_version
|
|
self.min_dynamic_patch = min_dynamic_patch
|
|
self.max_dynamic_patch = max_dynamic_patch
|
|
|
|
logger.info(f'vision_select_layer: {self.select_layer}')
|
|
logger.info(f'ps_version: {self.ps_version}')
|
|
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
|
|
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
|
|
|
|
def to_dict(self):
|
|
"""
|
|
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
|
|
|
Returns:
|
|
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
|
"""
|
|
output = copy.deepcopy(self.__dict__)
|
|
output['vision_config'] = self.vision_config.to_dict()
|
|
output['llm_config'] = self.llm_config.to_dict()
|
|
output['model_type'] = self.__class__.model_type
|
|
output['use_backbone_lora'] = self.use_backbone_lora
|
|
output['use_llm_lora'] = self.use_llm_lora
|
|
output['select_layer'] = self.select_layer
|
|
output['force_image_size'] = self.force_image_size
|
|
output['downsample_ratio'] = self.downsample_ratio
|
|
output['template'] = self.template
|
|
output['dynamic_image_size'] = self.dynamic_image_size
|
|
output['use_thumbnail'] = self.use_thumbnail
|
|
output['ps_version'] = self.ps_version
|
|
output['min_dynamic_patch'] = self.min_dynamic_patch
|
|
output['max_dynamic_patch'] = self.max_dynamic_patch
|
|
|
|
return output
|
|
|