a2c-PandaReachDense-v2 / config.json
tslai1992's picture
Initial commit
d08cc75
raw
history blame
15.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e8016e3d510>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e8016e323c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 300000, "_total_timesteps": 300000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690118626787618828, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAApKasPsPcNbzdSAo/pKasPsPcNbzdSAo/pKasPsPcNbzdSAo/pKasPsPcNbzdSAo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAFRQ/vgg8Sj9Yjbu9zB3svsXijb1Up9Q/0A/bP6hvPr/eGaI+8dtkv2bzlD/vo50/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACkpqw+w9w1vN1ICj+AvUe859mLulDuUTukpqw+w9w1vN1ICj+AvUe859mLulDuUTukpqw+w9w1vN1ICj+AvUe859mLulDuUTukpqw+w9w1vN1ICj+AvUe859mLulDuUTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.33720887 -0.0111 0.5401743 ]\n [ 0.33720887 -0.0111 0.5401743 ]\n [ 0.33720887 -0.0111 0.5401743 ]\n [ 0.33720887 -0.0111 0.5401743 ]]", "desired_goal": "[[-0.18660004 0.7899785 -0.09157819]\n [-0.46116483 -0.06928018 1.6613564 ]\n [ 1.71142 -0.74389124 0.3166036 ]\n [-0.89398104 1.1636779 1.2315654 ]]", "observation": "[[ 0.33720887 -0.0111 0.5401743 -0.01219118 -0.00106698 0.00320329]\n [ 0.33720887 -0.0111 0.5401743 -0.01219118 -0.00106698 0.00320329]\n [ 0.33720887 -0.0111 0.5401743 -0.01219118 -0.00106698 0.00320329]\n [ 0.33720887 -0.0111 0.5401743 -0.01219118 -0.00106698 0.00320329]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIl/xPMfdjL3PYYQ7bGU2PAZVqj12XFA+VW+evWc4171N97I98VKAPGoRBr7gNhs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02946431 -0.06878238 0.00403998]\n [ 0.01113258 0.08316998 0.20347771]\n [-0.07736079 -0.10508805 0.08738575]\n [ 0.01566455 -0.1309258 0.15157652]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITweynlp96r+UhpRSlIwBbJRLMowBdJRHQIx+2hh6Skl1fZQoaAZoCWgPQwiqm4u/7Ynlv5SGlFKUaBVLMmgWR0CMfTXtBv74dX2UKGgGaAloD0MID5wzorQ36L+UhpRSlGgVSzJoFkdAjHunwgDA8HV9lChoBmgJaA9DCPuvc9NmHOa/lIaUUpRoFUsyaBZHQIx6GEug6EJ1fZQoaAZoCWgPQwiHqMKf4U3gv5SGlFKUaBVLMmgWR0CMhK50bLlndX2UKGgGaAloD0MIG/M64pAN4b+UhpRSlGgVSzJoFkdAjIMNhuwX7HV9lChoBmgJaA9DCIWy8PW1LuC/lIaUUpRoFUsyaBZHQIyBgskIHC51fZQoaAZoCWgPQwjy0He3skTmv5SGlFKUaBVLMmgWR0CMf/dE9dNWdX2UKGgGaAloD0MIaFn3j4Xo37+UhpRSlGgVSzJoFkdAjIyc6V+qi3V9lChoBmgJaA9DCC/f+rDeqNi/lIaUUpRoFUsyaBZHQIyK/KnvUjN1fZQoaAZoCWgPQwgP7zmwHCHSv5SGlFKUaBVLMmgWR0CMiXLCemNzdX2UKGgGaAloD0MIFR3J5T8k4L+UhpRSlGgVSzJoFkdAjIfnMEA5rHV9lChoBmgJaA9DCBIWFXE6ydW/lIaUUpRoFUsyaBZHQIyUbbBXS0B1fZQoaAZoCWgPQwiXcr7Ye3Hhv5SGlFKUaBVLMmgWR0CMktPci4axdX2UKGgGaAloD0MIT8+7saAw2r+UhpRSlGgVSzJoFkdAjJFJuVHFxXV9lChoBmgJaA9DCJ7qkJvhBuO/lIaUUpRoFUsyaBZHQIyPvXmNiph1fZQoaAZoCWgPQwjUKY9uhMXmv5SGlFKUaBVLMmgWR0CMnd0Fr2xqdX2UKGgGaAloD0MIcLIN3IG65r+UhpRSlGgVSzJoFkdAjJw+C9RJmXV9lChoBmgJaA9DCEoH6/8cZuS/lIaUUpRoFUsyaBZHQIyatV3ljmV1fZQoaAZoCWgPQwj20D5W8Fvrv5SGlFKUaBVLMmgWR0CMmTCpm29ddX2UKGgGaAloD0MI2VpfJLTl6r+UhpRSlGgVSzJoFkdAjKTIPbwjMXV9lChoBmgJaA9DCGqEfqZet9W/lIaUUpRoFUsyaBZHQIyjI/9pAUt1fZQoaAZoCWgPQwiQ2Vn0TgXlv5SGlFKUaBVLMmgWR0CMoZY4ACGOdX2UKGgGaAloD0MIL9tOWyMC5L+UhpRSlGgVSzJoFkdAjKAG9pRGdHV9lChoBmgJaA9DCFNcVfZdkei/lIaUUpRoFUsyaBZHQIyptfeDWbx1fZQoaAZoCWgPQwjnGJC93n3nv5SGlFKUaBVLMmgWR0CMqBIxQBPsdX2UKGgGaAloD0MI+KdUibI35b+UhpRSlGgVSzJoFkdAjKaFDF6zFHV9lChoBmgJaA9DCLiwbrw7Mtu/lIaUUpRoFUsyaBZHQIyk+bPQfIV1fZQoaAZoCWgPQwh41QPmIdPhv5SGlFKUaBVLMmgWR0CMrp7laKUFdX2UKGgGaAloD0MIxm8KKxVU6b+UhpRSlGgVSzJoFkdAjKz8E/0NBnV9lChoBmgJaA9DCD6zJEBNLda/lIaUUpRoFUsyaBZHQIyrb0HyEtd1fZQoaAZoCWgPQwg9m1Wfqy3rv5SGlFKUaBVLMmgWR0CMqeFQl8gIdX2UKGgGaAloD0MIbjKqDONu4b+UhpRSlGgVSzJoFkdAjLOGWD6Fd3V9lChoBmgJaA9DCAx5BDdSNui/lIaUUpRoFUsyaBZHQIyx4n0Cih51fZQoaAZoCWgPQwip2JjXEQfgv5SGlFKUaBVLMmgWR0CMsFSMLncMdX2UKGgGaAloD0MImQ0yychZ27+UhpRSlGgVSzJoFkdAjK7EyLyc1HV9lChoBmgJaA9DCEN0CBwJNOa/lIaUUpRoFUsyaBZHQIy4i8g6ltV1fZQoaAZoCWgPQwiFsBpLWBvkv5SGlFKUaBVLMmgWR0CMtue+23KCdX2UKGgGaAloD0MIOsrBbAKM4L+UhpRSlGgVSzJoFkdAjLVaLn9vTHV9lChoBmgJaA9DCLD+z2G+POK/lIaUUpRoFUsyaBZHQIyzyxRl6JJ1fZQoaAZoCWgPQwhvumWH+Afgv5SGlFKUaBVLMmgWR0CMvWvmozeodX2UKGgGaAloD0MIyxEykGeX47+UhpRSlGgVSzJoFkdAjLvHTqjaf3V9lChoBmgJaA9DCLpnXaPlQNq/lIaUUpRoFUsyaBZHQIy6OM4tHx11fZQoaAZoCWgPQwg5JSAm4ULmv5SGlFKUaBVLMmgWR0CMuKkOZssQdX2UKGgGaAloD0MIn3HhQEgW2L+UhpRSlGgVSzJoFkdAjMI6eoUBXHV9lChoBmgJaA9DCJ+rrdhfduG/lIaUUpRoFUsyaBZHQIzAlix3V091fZQoaAZoCWgPQwhpO6buyi7bv5SGlFKUaBVLMmgWR0CMvwhKUVzqdX2UKGgGaAloD0MILEZda+9T5L+UhpRSlGgVSzJoFkdAjL14zrNW2nV9lChoBmgJaA9DCCIXnMHfL+G/lIaUUpRoFUsyaBZHQIzG86cRUWF1fZQoaAZoCWgPQwgBbhYvFobTv5SGlFKUaBVLMmgWR0CMxU+BYmsvdX2UKGgGaAloD0MIcvvlkxXD47+UhpRSlGgVSzJoFkdAjMPBnBciW3V9lChoBmgJaA9DCOVH/Io1XOK/lIaUUpRoFUsyaBZHQIzCMry1/lR1fZQoaAZoCWgPQwj7A+W2fQ/jv5SGlFKUaBVLMmgWR0CMy+BjnV5KdX2UKGgGaAloD0MIlwLS/gfY4L+UhpRSlGgVSzJoFkdAjMo7xNIsiHV9lChoBmgJaA9DCDsah/pdWOG/lIaUUpRoFUsyaBZHQIzIrgZTAFh1fZQoaAZoCWgPQwidLSC0Hr7iv5SGlFKUaBVLMmgWR0CMxx8AJb+tdX2UKGgGaAloD0MI4ue/B69d4b+UhpRSlGgVSzJoFkdAjNDL8BMi8nV9lChoBmgJaA9DCCVdM/lmG+G/lIaUUpRoFUsyaBZHQIzPJ/oaDPJ1fZQoaAZoCWgPQwj2z9OAQVLjv5SGlFKUaBVLMmgWR0CMzZvAoG6gdX2UKGgGaAloD0MI9PkoIy6A6L+UhpRSlGgVSzJoFkdAjMwMzVMEinV9lChoBmgJaA9DCPNWXYdqyuW/lIaUUpRoFUsyaBZHQIzWXUMG5c11fZQoaAZoCWgPQwjturciMUHgv5SGlFKUaBVLMmgWR0CM1Luv2Xb/dX2UKGgGaAloD0MIjUephCd06L+UhpRSlGgVSzJoFkdAjNMv/rB0p3V9lChoBmgJaA9DCNCAejNqvtu/lIaUUpRoFUsyaBZHQIzRoGnn+yZ1fZQoaAZoCWgPQwiGxhNBnIfnv5SGlFKUaBVLMmgWR0CM21brTpgUdX2UKGgGaAloD0MIx0YgXtev7r+UhpRSlGgVSzJoFkdAjNm1AJLM93V9lChoBmgJaA9DCAQg7upVZNu/lIaUUpRoFUsyaBZHQIzYJ8fFJg91fZQoaAZoCWgPQwiafR6jPPPev5SGlFKUaBVLMmgWR0CM1pkXk5p8dX2UKGgGaAloD0MIoRLXMa643r+UhpRSlGgVSzJoFkdAjOAmO2iL23V9lChoBmgJaA9DCAKc3sX78eO/lIaUUpRoFUsyaBZHQIzeglOXVsl1fZQoaAZoCWgPQwhBYrt7gG7kv5SGlFKUaBVLMmgWR0CM3PSro4dZdX2UKGgGaAloD0MIdlJflnZq17+UhpRSlGgVSzJoFkdAjNtlnh86WHV9lChoBmgJaA9DCPn2rkFfeue/lIaUUpRoFUsyaBZHQIzlUgfU4Jh1fZQoaAZoCWgPQwhp/wOsVbvUv5SGlFKUaBVLMmgWR0CM4631BdD6dX2UKGgGaAloD0MI+1sC8E8p5b+UhpRSlGgVSzJoFkdAjOIgN5MURHV9lChoBmgJaA9DCIQSZtr+FeW/lIaUUpRoFUsyaBZHQIzglP557gN1fZQoaAZoCWgPQwiXAPxTqkTjv5SGlFKUaBVLMmgWR0CM6hZDiOvMdX2UKGgGaAloD0MI1ldXBWox7b+UhpRSlGgVSzJoFkdAjOhx/NJOFnV9lChoBmgJaA9DCEAv3Lkw0ui/lIaUUpRoFUsyaBZHQIzm5COWBz51fZQoaAZoCWgPQwjryfyjb1Lgv5SGlFKUaBVLMmgWR0CM5VRplBhQdX2UKGgGaAloD0MITMKFPIIb4L+UhpRSlGgVSzJoFkdAjO8C9RJmNHV9lChoBmgJaA9DCGVW73A7tOO/lIaUUpRoFUsyaBZHQIztXtIClrN1fZQoaAZoCWgPQwg+y/Pg7qzfv5SGlFKUaBVLMmgWR0CM69DaXa8IdX2UKGgGaAloD0MICcTr+gW76b+UhpRSlGgVSzJoFkdAjOpBo24usnV9lChoBmgJaA9DCHvYCwVsh+K/lIaUUpRoFUsyaBZHQIz01fReC051fZQoaAZoCWgPQwgyOiAJ+3bTv5SGlFKUaBVLMmgWR0CM8zUnXumadX2UKGgGaAloD0MIWDofniXI4r+UhpRSlGgVSzJoFkdAjPGp5mh/RXV9lChoBmgJaA9DCARz9Pi9Tdm/lIaUUpRoFUsyaBZHQIzwHR9gF5h1fZQoaAZoCWgPQwgI5ujxexviv5SGlFKUaBVLMmgWR0CM/LWKdhAodX2UKGgGaAloD0MIcHztmSWB4r+UhpRSlGgVSzJoFkdAjPsUPxx1gnV9lChoBmgJaA9DCIUGYtnMoeC/lIaUUpRoFUsyaBZHQIz5ilenhsJ1fZQoaAZoCWgPQwgwn6wYrg7jv5SGlFKUaBVLMmgWR0CM9/9itq59dX2UKGgGaAloD0MIqMXgYdq347+UhpRSlGgVSzJoFkdAjQVgzHjp93V9lChoBmgJaA9DCAsMWd3qOee/lIaUUpRoFUsyaBZHQI0DwCbMHKR1fZQoaAZoCWgPQwh+GvfmN0zav5SGlFKUaBVLMmgWR0CNAkELYwqRdX2UKGgGaAloD0MI/aIE/YWe5b+UhpRSlGgVSzJoFkdAjQC02UB4lnV9lChoBmgJaA9DCDGZKhiV1Oa/lIaUUpRoFUsyaBZHQI0OCo4uK4x1fZQoaAZoCWgPQwi5x9KHLqjjv5SGlFKUaBVLMmgWR0CNDHJxNqQBdX2UKGgGaAloD0MIRyBe1y/Y17+UhpRSlGgVSzJoFkdAjQrqCxu89XV9lChoBmgJaA9DCJmghm9h3ea/lIaUUpRoFUsyaBZHQI0JX+S8rZt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 15000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}