File size: 1,937 Bytes
f87459e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v2-libri-10min
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v2-libri-10min

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1310
- Wer: 0.6321

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.4815        | 62.5  | 250  | 2.9246          | 1.0    |
| 2.8853        | 125.0 | 500  | 2.9048          | 1.0    |
| 1.7486        | 187.5 | 750  | 1.4360          | 0.6805 |
| 0.0923        | 250.0 | 1000 | 1.9166          | 0.6777 |
| 0.0379        | 312.5 | 1250 | 1.9635          | 0.6694 |
| 0.0209        | 375.0 | 1500 | 1.9195          | 0.6625 |
| 0.012         | 437.5 | 1750 | 2.1305          | 0.6335 |
| 0.0078        | 500.0 | 2000 | 2.1604          | 0.6169 |
| 0.0047        | 562.5 | 2250 | 2.1273          | 0.6266 |
| 0.0035        | 625.0 | 2500 | 2.1310          | 0.6321 |


### Framework versions

- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 1.18.3
- Tokenizers 0.13.3