File size: 3,309 Bytes
252b216 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
library_name: transformers
license: apache-2.0
base_model: tsavage68/IE_M2_1000steps_1e7rate_SFT
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: IE_M2_350steps_1e8rate_05beta_cSFTDPO
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IE_M2_350steps_1e8rate_05beta_cSFTDPO
This model is a fine-tuned version of [tsavage68/IE_M2_1000steps_1e7rate_SFT](https://huggingface.co/tsavage68/IE_M2_1000steps_1e7rate_SFT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6608
- Rewards/chosen: 0.0105
- Rewards/rejected: -0.0599
- Rewards/accuracies: 0.3850
- Rewards/margins: 0.0703
- Logps/rejected: -41.1416
- Logps/chosen: -42.1846
- Logits/rejected: -2.9156
- Logits/chosen: -2.8543
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-08
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 350
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6945 | 0.4 | 50 | 0.6933 | 0.0121 | 0.0098 | 0.2450 | 0.0023 | -41.0022 | -42.1813 | -2.9159 | -2.8545 |
| 0.6936 | 0.8 | 100 | 0.6888 | 0.0052 | -0.0069 | 0.2150 | 0.0121 | -41.0356 | -42.1952 | -2.9158 | -2.8545 |
| 0.6822 | 1.2 | 150 | 0.6646 | 0.0021 | -0.0599 | 0.3650 | 0.0621 | -41.1417 | -42.2012 | -2.9157 | -2.8544 |
| 0.6637 | 1.6 | 200 | 0.6652 | 0.0023 | -0.0586 | 0.3600 | 0.0609 | -41.1390 | -42.2010 | -2.9157 | -2.8544 |
| 0.6647 | 2.0 | 250 | 0.6601 | 0.0043 | -0.0670 | 0.3900 | 0.0713 | -41.1557 | -42.1968 | -2.9157 | -2.8544 |
| 0.6697 | 2.4 | 300 | 0.6624 | 0.0067 | -0.0606 | 0.3800 | 0.0673 | -41.1430 | -42.1922 | -2.9156 | -2.8543 |
| 0.6579 | 2.8 | 350 | 0.6608 | 0.0105 | -0.0599 | 0.3850 | 0.0703 | -41.1416 | -42.1846 | -2.9156 | -2.8543 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.0.0+cu117
- Datasets 3.0.0
- Tokenizers 0.19.1
|